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Music separation

Music signals are composed of several instrumental tracks (sources) that add up together.

Source separation or Demixing = recovering the sources from the mixture.

▷ An important preprocessing for many downstream tasks.

▷ Automatic music transcription.

▷ Music information retrieval.

▷ A goal in itself for synthesis purposes.

▷ Augmented mixing, e.g., from mono to stereo.

▷ Backing track generation / karaoke.

Beyond music:

▷ Speech enhancement, speaker separation.

▷ Ambient / environmental sound analysis.

▷ Biomedical signals, astronomy imaging, fluorescence spectroscopy, etc.
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A difficult task?

Mixing is easy . . .

but demixing is not.

Finding {sj}Jj=1 such that x =

J∑
j=1

sj is an under-determined problem.

▷ Need to incorporate additional information / constraint / structure.

▷ Either via expert knowledge or by leveraging data.
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Setting the stage

▷ The raw material: audio signals.

Time Time Time

▷ It’s hard to see structure there. . .

▷ We rather transform them into a time-frequency representation, e.g., a spectrogram.
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The separation pipeline

Transform Synthesis
Separation model

▷ The transform is usually the short-time Fourier transform (STFT).

▷ The separator is based on:

▷ Earlier approaches (independent / principal component analysis).

▷ Nonnegative matrix factorization (NMF).

▷ Deep neural networks (DNNs).

▷ Synthesis is performed through inverse STFT.
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Nonnegative matrix factorization (NMF)

Given a (nonnegative) spectrogram V, find a factorization WH such that the factors W and H are:

▷ low rank.

▷ nonnegative.

Nonnegativity favors interpretability.

▷ W is a dictionary of spectral atoms.

▷ H is a matrix of temporal activation.
atoms

activations

Estimation via an optimization problem:

min
W,H

D(V,WH) + regularizations

▷ Many options for the divergence, the regularizations, the optimization technique. . .
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NMF for source separation

Exploit additivity for getting each source spectrogram.

V ≈ WH =

J∑
j=1

WjHj =

J∑
j=1

Vj

Procedure

1. Factorize the mixture’s spectrogram (i.e., find W

and H by solving the optimization problem).

2. Cluster atoms wk that belong to the same source

to build source-specific matrices: Wj = {wk}k∈Kj

3. Multiply each dictionary with the corresponding

activations to retrieve each source spectrogram.

✓ Light and interpretable model.

✗ Performance is limited due to the clustering / search space is too large.
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Introducing supervision data

Assume some isolated tracks containing one instrument are available.

▷ For each instrument j, pretrain the dictionary from it’s spectrogram Vpretrain
j :

Wpretrain
j = argmin

W,H
D(Vpretrain

j ,WH)

▷ On the mixture, fix the dictionaries and only estimate the activation:

[H1, . . . ,HJ ] = argmin
H

D(V, [Wpretrain
1 , . . . ,Wpretrain

J ]H)

▷ Retrieve each source’s spectrogram via Vj = Wpretrain
j Hj

(✓) Performance is better, but still limited: low-rankness, additivity. . . .
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Deep neural networks (DNNs)

Model: a mapping function f with parameters θ between inputs x and outputs y:

y ≈ fθ(x)

▷ x and y are high-dimensional audio data (e.g., spectrograms).

▷ fθ is built by assembling (many) neurons and activation functions (|θ| ∼ 107).

Supervised learning

▷ Consider a collection of inputs/outputs pairs {xi, yi}Ii=1 (= a training dataset).

▷ The parameters of the network are learned via:

min
θ

I∑
i=1

L(yi, fθ(xi))

▷ Solved with a stochastic gradient descent algorithm (e.g., ADAM).
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What is research like?

From expert knowledge research

▷ How do I refine this model to overcome its

limitation (e.g., convolutive NMF)?

▷ Which regularization would fit this

intrument (sparsity, (in)harmonicity)?

▷ How do I model it mathematically (trade-off

between complexity and generalizability)?

▷ Which loss would be more

perceptually-relevant?

▷ How do I (efficiently) solve the new

optimization problem?

to data-driven model engineering.

▷ Which architecture would be more

powerful?

▷ Should I re-test every hyperparameter value

upon a minor additional change?

▷ How can I parallelize / reduce training time

/ optimally use my hardware?

▷ How can I use more data / better exploit

my available data / cope with data scarcity?
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A few architectures

Source: Huang et al., “Deep learning for monaural speech separation”, Proc. IEEE ICASSP, 2014.
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A few architectures

Source: Chandna et al., “Monoaural Audio Source Separation Using Deep Convolutional Neural Networks”, Lecture Notes in Computer Science, 2017.
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A few architectures

Source: Drossos et al., “MaD TwinNet: Masker-Denoiser Architecture with Twin Networks for Monaural Sound Source Separation”, Proc. IEEE IJCNN, 2018.
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A few architectures

Source: Défossez, “Hybrid Spectrogram and Waveform Source Separation”, Proc. ISMIR Workshop on Music Source Separation, 2021.
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A few architectures

Source: Yang et al., “A Transformer-Based Approach to Music Separation”, Tech report, 2023.
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A few architectures

Source: Rouard et al., “Hybrid transformers for music source separation”, Proc. IEEE ICASSP, 2023.
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Results

✓ Separation performance is impressive

Vocals Bass Drums Guitar

Open Unmix (2018)

BSRNN (2023)

✗ But. . .

▷ Tedious / endless experiments.

▷ Exacerbates the reproductibility crisis.

▷ Energy / environmental costs.

▷ Black boxes / lack of interpretability.

▷ Difficult to adapt to new / slightly different tasks.

Source: Magron et al., “A case for reproductibility: replicating

’Band-split RNN for music separation’”, 2025.

Source: Lu et al., “Music Source Separation with Band-Split RoPE

Transformer”, 2024.

11
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What to do?

Clear pros and cons for both data-driven and

expert knowledge-based approaches.

Source: Girin, “Deep Learning for Speech Enhancement”, 2018.

The obvious solution: combine them.

(not exactly breaking news)

Source: Vincent, “Is audio signal processing still useful in the era of machine

learning?”, 2015.

12
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Features / data representation

▷ Input features = the essence of data-driven models.

▷ Tradeoff between hand-crafted features (more robust) and raw data (more powerful).

Feature domain Magnitude Waveform STFT

real / imaginary

STFT

magnitude / phase

Performance

Data need / model size

Robustness / flexibility

(✓)

✓

✓

✓

✗

✗

✓

(✓)

(✓)

✓

✓

✓
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Hybrid architectures

Traditional NMF: a statistical framework / generative model.

▷ Estimation by alternating spectral and spatial parameters.

▷ Sources are recovered via filtering.

Hybrid approach

▷ Filtering in cunjunction with DNN-based spectral modeling.

▷ Lighter and more robust than end-to-end approaches.

Source: Nugraha et al., “Multichannel Music Separation with Deep Neural Networks”, Proc. EUSIPCO, 2016.

14



Hybrid architectures

Traditional NMF: a statistical framework / generative model.

▷ Estimation by alternating spectral and spatial parameters.

▷ Sources are recovered via filtering.

Hybrid approach

▷ Filtering in cunjunction with DNN-based spectral modeling.

▷ Lighter and more robust than end-to-end approaches.

Source: Nugraha et al., “Multichannel Music Separation with Deep Neural Networks”, Proc. EUSIPCO, 2016.

14



Unfolding algorithms

Problem

▷ Estimated spectrograms have to be reverted back to waveforms.

▷ This is done via spectrogram inversion iterative algorithms.

Deep unfolding

▷ Each algorithm’s iteration = one layer of a neural network.

▷ Train via backpropagation through the unfolded algorithm.

Results
Fixed post-processing

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Iterations

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

SD
R 
(d
B)

Unfolded algorithm

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Iterations

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

SD
R 
(d
B)

MixIncons
MixIncons_hardMag
MagIncons_hardMix
MISI

✓ Improved performance over a fixed post-processing, with (almost) no additional parameter.
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Conclusion

Key message

Combining expert knowledge and data-driven models:

a promising approach for machine learning-based music separation.

▷ Enable networks to exploit prior information.

▷ Improve their robustness and reduce their size.

▷ More interpretable and principled networks.

Perspectives

▷ A more systematic use of this approach.

▷ Adpatation to specific sources / instruments / setups.

▷ Extension to other tasks, e.g., musical motif discovery.
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