Machine learning for music separation

Combining data-driven models and expert knowledge
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Music separation
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> An important preprocessing for many downstream tasks.

> Automatic music transcription.
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> A goal in itself for synthesis purposes. 7 é
> Augmented mixing, e.g., from mono to stereo. o
> Backing track generation / karaoke.

Beyond music:

> Speech enhancement, speaker separation.
> Ambient / environmental sound analysis.

> Biomedical signals, astronomy imaging, fluorescence spectroscopy, etc.
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Finding {s;}j_,

> Need to incorporate additional information / constraint / structure.

> Either via expert knowledge or by leveraging data.
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Setting the stage

> The raw material: audio signals.

Time Time Time

> It's hard to see structure there. ..
> We rather transform them into a time-frequency representation, e.g., a spectrogram.

Frequency

Frequency
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The separation pipeline

Transform Synthesis

Separation model
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> The transform is usually the short-time Fourier transform (STFT).
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The separation pipeline

Transform

> The transform is usually the short-time Fourier transform (STFT).

> The separator is based on:
> Earlier approaches (independent / principal component analysis).
> Nonnegative matrix factorization (NMF).
> Deep neural networks (DNNs).

> Synthesis is performed through inverse STFT.
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> low rank.
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Nonnegative matrix factorization (NMF)

Given a (nonnegative) spectrogram V, find a factorization WH such that the factors W and H are
> low rank.

> nonnegative.

. - activations [\\
Nonnegativity favors interpretability. ‘
> W is a dictionary of spectral atoms. V ~ WH :2
> H is a matrix of temporal activation. E—
atoms =
=
Estimation via an optimization problem:
min D(V,WH) -+ regularizations
W, H

> Many options for the divergence, the regularizations, the optimization technique. ..
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NMF for source separation

Exploit additivity for getting each source spectrogram.

J J
VaAWH=> WH;=) V,
j=1 j=1

Procedure

1. Factorize the mixture's spectrogram (i.e., find W
and H by solving the optimization problem).

2. Cluster atoms wj, that belong to the same source

to build source-specific matrices: W = {w}, .

3. Multiply each dictionary with the corresponding
activations to retrieve each source spectrogram.

v/ Light and interpretable model.

X Performance is limited due to the clustering / search space is too large.
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Introducing supervision data

Assume some isolated tracks containing one instrument are available.

> For each instrument j, pretrain the dictionary from it's spectrogram V?re"ai":

trai . trai
W?re PN — argmin D(V?re N UWH)
W.H

> On the mixture, fix the dictionaries and only estimate the activation:

Hy,...,Hj] = argPIInin D(V, [wPretrain ,W?emi”}H)

. y . trai
> Retrieve each source's spectrogram via V; = WE<"H;

Performance is better, but still limited: low-rankness, additivity. ...



Deep neural networks (DNNs)

Model: a mapping function f with parameters 8 between inputs = and outputs y:

y =~ fo()

> « and y are high-dimensional audio data (e.g., spectrograms).

> fp is built by assembling (many) neurons and activation functions (|6 ~ 107).



Deep neural networks (DNNs)

Model: a mapping function f with parameters 8 between inputs = and outputs y:

y =~ fo()

> « and y are high-dimensional audio data (e.g., spectrograms).

> fp is built by assembling (many) neurons and activation functions (|6 ~ 107).
Supervised learning

> Consider a collection of inputs/outputs pairs {x;, yi}le (= a training dataset).

> The parameters of the network are learned via:
I
i Ly .
3" o o)
i=

> Solved with a stochastic gradient descent algorithm (e.g., ADAM).



What is research like?

From expert knowledge research

> How do | refine this model to overcome its
limitation (e.g., convolutive NMF)?

> Which regularization would fit this
intrument (sparsity, (in)harmonicity)?

> How do | model it mathematically (trade-off
between complexity and generalizability)?

> Which loss would be more
perceptually-relevant?

> How do | (efficiently) solve the new
optimization problem?



What is research like?

From expert knowledge research to data-driven model engineering.

> How do | refine this model to overcome its > Which architecture would be more
limitation (e.g., convolutive NMF)? powerful?

> Which regularization would fit this > Should | re-test every hyperparameter value
intrument (sparsity, (in)harmonicity)? upon a minor additional change?

> How do | model it mathematically (trade-off > How can | parallelize / reduce training time
between complexity and generalizability)? / optimally use my hardware?

> Which loss would be more > How can | use more data / better exploit
perceptually-relevant? my available data / cope with data scarcity?

> How do | (efficiently) solve the new
optimization problem?



A few architectures
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Source: Huang et al., “Deep learning for monaural speech separation”, Proc. IEEE ICASSP, 2014.



A few architectures
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Source: Chandna et al., “Monoaural Audio Source Separation Using Deep Convolutional Neural Networks”, Lecture Notes in Computer Science, 2017.



A few architecture

Mixture Singing Voice

RNN Encoder

H

dec

The Masker

Source: Drossos et al., “MaD TwinNet: Masker-Denoiser Architecture with Twin Networks for Monaural Sound Source Separation”, Proc. IEEE IJCNN, 2018.



A few architectures

Decoder;_; or output

Decoder; (Cin = 100, Cour = 4 % 2) Relu(ConvTrld(Ciy, Cour, K = 8,5 = 4))
Decoder(Ciy, = 200, Cour = 100) GLU(Convld(Cyy, 2Cin, K = 3,5 = 1))
Decoderg(Cin = 3200, Cowt = 1600) [Bucoder;]  [Decoder; 1 or LST™)

[_Tincar(Crn = 6400, Cpur = 3200) |

hidden size=3200
(s} 2 bidirectional layers [Decoder;]  [Bacoder; or LST™]

Encoderg (Ci, = 1600, C,ue = 3200)

\ | GLU(Convld(Cout, 2Cous, K = 1,5 = 1)) ‘

Encoder; (O = 100 Cons = 200) Relu(Conv1d(Cin, Cous, K = 8,5 = 4))

Encodery (Cin = 2, Cou = 100)

Source: Défossez, “Hybrid Spectrogram and Waveform Source Separation”, Proc. ISMIR Workshop on Music Source Separation, 2021.




A few architectures
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Source: Yang et al., “A Transformer-Based Approach to Music Separation”, Tech report, 2023.



A few architectures
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v/ Separation performance is impressive ¥
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v/ Separation performance is impressive ¥

Vocals Bass Drums  Guitar

Open Unmix (2018) v @

BSRNN (2023) W

X But...

>
>
>
>
>

Tedious / endless experiments.

Exacerbates the reproductibility crisis.

Energy / environmental costs.

Black boxes / lack of interpretability.

Difficult to adapt to new / slightly different tasks.

lator [36], which approximates energy consumption base:
on hardware specifications (we consider a 3 W power pe
8 GB of memory).* This amounts to 19,030 kWh, whic
is more than 44 times the energy consumption of trainin
the best model, or 150 times that of the base model.

In all fairness, part of this cost is due to our own im
plementation errors, which resulted in, e.g., interrupted ¢
redundant training runs. However, we believe that mos

A L R EOR B

e

Source: Magron et al., “A case for reproductibility: replicating
'Band-split RNN for music separation’, 2025.

W U U eiuny usage,
well as the mixed precision, where the STFT and iSTFT modules
use FP32 and all the others use FP16.

‘We trained three separation models respectively for vocals, bass,
and drums using In-House and the Musdb18HQ training set. For the
“other” stem, we subtracted the vocals, bass, and drums signals from
the input mixture in the time domain. For each model, the training
process lasted for 4 weeks using 16 Nvidia A100-80GB GPUs with a
total batch size of 128 (i.e., 8 for each GPU). The model checkpoint
with the best validation result was selected.

Enframe & Deframe. We use a hoj

o
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Source: Lu et al., “Music Source Separation with Band-Split RoPE
Transformer”, 2024.
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What to do?

Clear pros and cons for both data-driven and
expert knowledge-based approaches.

Deep Learning approach — Revolution |

e This acted as an electroshock in the audio processing
community: DL can solve a 100% signal processing problem!
Decades of development of signal
processing / CASA machinery shortly s+n
replaced with a data-driven blackbox!

Deep approach but shallow (and boring) science. TONS of
papers with DNN regression, discussing the effects of different
DNN models, i/o data representations, training criteria,
datasets, etc., often leading to more or less the same results.
This is really the dark side of DL (research), is it not??!!
Explanations for this success exist! e.g. DNNs are powerful
models that can account for complex (non-linear)
dependencies of data across TF points and are highly scalable
with data size, whereas most traditional SP techniques
assume (conditional) independence of data across TF points
and are poorly scalable with data size.

Source: Girin, “Deep Learning for Speech Enhancement”, 2018.


https://www.lebesgue.fr/sites/default/files/attach/girin_slides.pdf
https://members.loria.fr/EVincent/keynotes-tutorials-and-press/
https://members.loria.fr/EVincent/keynotes-tutorials-and-press/

What to do?

Clear pros and cons for both data-driven and The obvious solution: combine them.
expert knowledge-based approaches. (not exactly breaking news)

. q d t tunity!
Deep Learning approach — Revolution | and some saw a great opportunity

e This acted as an electroshock in the audio processing
community: DL can solve a 100% signal processing problem!
Decades of development of signal
processing / CASA machinery shortly s+n
replaced with a data-driven blackbox!

Deep approach but shallow (and boring) science. TONS of
papers with DNN regression, discussing the effects of different
DNN models, i/o data representations, training criteria, Let’s work together!
datasets, etc., often leading to more or less the same results. We need your modeling
This is really the dark side of DL (research), is it not??!! power to progress too.

| need more data and domain
knowledge to progress. Would
you help me?

Explanations for this success exist! e.g. DNNs are powerful

models that can account for complex (non-linear)

dependencies of data across TF points and are highly scalable

with data size, whereas most traditional SP techniques ,

assume (conditional) independence of data across TF points lhw

and are poorly scalable with data size. Source: Vincent, “Is audio signal processing still useful in the era of machine
learning?”, 2015.

Source: Girin, “Deep Learning for Speech Enhancement”, 2018.


https://www.lebesgue.fr/sites/default/files/attach/girin_slides.pdf
https://members.loria.fr/EVincent/keynotes-tutorials-and-press/
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> Input features = the essence of data-driven models.

> Tradeoff between hand-crafted features (more robust) and raw data (more powerful).
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Features / data representation

> Input features = the essence of data-driven models.

> Tradeoff between hand-crafted features (more robust) and raw data (more powerful).

Feature domain Magnitude Waveform STFT STFT
real / imaginary  magnitude / phase

Performance
Data need / model size
Robustness / flexibility




Hybrid architectures

Traditional NMF: a statistical framework / generative model.
> Estimation by alternating spectral and spatial parameters.

> Sources are recovered via filtering.

Algorithm
Input:
Xfn &> STFT of mixture: I x 1
: Zpfn 4 preprocess (Xy,)

1

2

3: for j < 1,J do

4 Rjfn < I x I identity matrix
5: for [ < 1,L do

6 for k + 1, K do

7 for j < 1,7 do

8
9:

Eim @)
: Re,,, « (5
10: R < (8)
11 for j < 1,J do
12: ‘ zjn +— (1)

- 2
30| [oifne-ees vygn] < [NMF (\/Z1fns- - Vzifm)]
14: for j « 1,.J do
15: ‘ Cjfn + (3)

Output:
Cifn &> STFT of sources images




Hybrid architectures

Traditional NMF: a statistical framework / generative model.

> Estimation by alternating spectral and spatial parameters. orim

Xfn > STFT of mixture: 7 x 1
: Zpfn 4 preprocess (Xy,)

> Sources are recovered via filtering. !

. ; fc 1,.J de
Hybrid approach T Ry T 1 identity matix
s: for [+ 1,L do
6:

7
8:
9:

for k + 1, K do
for j + 1,.J do

> Filtering in cunjunction with DNN-based spectral modeling.

. Cifn — (3)
> Lighter and more robust than end-to-end approaches. : ;f, —)
10: R < (8)
o i 1" fTr J 1,7 do
i L s s 12: Zjfn — (7)
2-cl 2-ch 2-cl 2-ch i .
: o s(:m't:lu R u suz\m':'] 13| [orgns o vapa] < [DNN (Vim0 /)]
A A A

i i i 14: for j < 1,.J do
1 150 | Gipn = (3)
—source |9 Spectral update ,C,‘.;’,'Q""'J

~source .. Output:
Cifn &> STFT of sources images
X
Wiener filtering | Spatial update:
2 Multich. s

Source: Nugraha et al., “Multichannel Music Separation with Deep Neural Networks”, Proc. EUSIPCO, 2016.
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> Estimated spectrograms have to be reverted back to waveforms. e

> This is done via spectrogram inversion iterative algorithms. —

Deep unfolding l

> Each algorithm’s iteration = one layer of a neural network. @
. . . . ~ Al —
> Train via backpropagation through the unfolded algorithm. Kl K

> [op{e]..] > w.
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folding algorithms

Problem

> Estimated spectrograms have to be reverted back to waveforms. e

> This is done via spectrogram inversion iterative algorithms. —

Deep unfolding l
> Each algorithm’s iteration = one layer of a neural network. @ —
> Train via backpropagation through the unfolded algorithm. o
Results | - - .
Fixed post-processing lﬁJnfoIded algorithm H L o =

68 68
67 67
65

—e— MixIncons

—+— MixIncons_hardMag
—— Maglincons_hardMix
o2 21— Misl

25 50 75 100 125 150 175 200 To 15 20 25 30 35 40 45 50
Iterations Iterations

v Improved performance over a fixed post-processing, with (almost) no additional parameter.



Conclusion

Key message

( )

Combining expert knowledge and data-driven models:
a promising approach for machine learning-based music separation.

> Enable networks to exploit prior information.

Signal analysis

> Improve their robustness and reduce their size.

Optimization

> More interpretable and principled networks. Decp Mgring




Conclusion

Key message

4 )
Combining expert knowledge and data-driven models:
a promising approach for machine learning-based music separation.
> Enable networks to exploit prior information. s bl
> Improve their robustness and reduce their size.
> More interpretable and principled networks. iy Do i
\_ J

Perspectives

> A more systematic use of this approach.
> Adpatation to specific sources / instruments / setups.

> Extension to other tasks, e.g., musical motif discovery.
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