# **Data-independent Beamforming for** End-to-end Multichannel Multi-speaker ASR

Can Cui, Paul Magron, Mostafa Sadeghi, Emmanuel Vincent

IEEE MMSP - Beijing, September 21st, 2025

















#### **Problem statement**

#### Meeting transcription

- ▶ Main goal: who said what and when.



#### Problem statement

#### Meeting transcription

- ▶ Main goal: who said what and when.

#### Related tasks

- Source separation: extract one signal for each speaker.
- Diarization: knowing who speaks when.





L

#### Multichannel ASR



#### Key challenges

- Descriping speakers, noise, reverberation.
- ▶ How to optimally exploit spatial information.
- ▷ Combination of modules and their input-output representations.

# **Existing strategies**

Multichannel ASR using raw inputs (Yu et al. 2023).

- $\triangleright$  No need for an extra separation stage.
- ▷ Sensitive to noise, reverberation, and overlapping speakers.



#### **Existing strategies**

Multichannel ASR using raw inputs (Yu et al. 2023).

- ▷ No need for an extra separation stage.
- ▷ Sensitive to noise, reverberation, and overlapping speakers.

Single-channel ASR using preprocessed signals (Raj et al. 2021; Masuyama et al. 2023).

- ▷ Better performance / robustness.
- ▶ But the ASR system does not optimally use the spatial information.



# **Proposed approach**

Alternative multichannel ASR systems use processed inputs (Kanda et al. 2023).

- ▷ A first network extracts a subset of signals.
- ▷ Better performance, but more computationally demanding.



# **Proposed approach**

Alternative multichannel ASR systems use processed inputs (Kanda et al. 2023).

- ▷ A first network extracts a subset of signals.
- ▶ Better performance, but more computationally demanding.

#### Proposal

Processing multichannel inputs with data-independent beamforming.

- ▶ Extract signals from various positions that match the speakers' location.
- ▶ Enable the ASR system to leverage spatial / cross-channel information.
- ▶ Learning-free: no extra parameter / faster inference.



| Introduction    |  |  |
|-----------------|--|--|
| Proposed method |  |  |
| Experiments     |  |  |
| Conclusion      |  |  |

# Proposed method

# Setup

Multichannel signal:  $\mathbf{x}(f) \in \mathbb{C}^I$  in the short-time Fourier transform domain.

# Setup

Multichannel signal:  $\mathbf{x}(f) \in \mathbb{C}^I$  in the short-time Fourier transform domain.

Spherical coordinates with azimuth  $\theta$  and elevation  $\phi$ .

 $\,\vartriangleright\,$  Each point in space is described in terms of its unit vector:

$$\mathbf{k} = \begin{bmatrix} \cos \theta \cos \phi \\ \sin \theta \cos \phi \\ \sin \phi \end{bmatrix}$$



# Setup

Multichannel signal:  $\mathbf{x}(f) \in \mathbb{C}^I$  in the short-time Fourier transform domain.

Spherical coordinates with azimuth  $\theta$  and elevation  $\phi$ .

▷ Each point in space is described in terms of its unit vector:

$$\mathbf{k} = \begin{bmatrix} \cos \theta \cos \phi \\ \sin \theta \cos \phi \\ \sin \phi \end{bmatrix}$$

Sound propagation from a point k to a microphone m via a steering vector:

$$\mathbf{d}(\theta, \phi, f) = \begin{bmatrix} e^{-2j\pi \mathbf{k}^T(\theta, \phi, f)\mathbf{m}_1/\lambda} \\ \vdots \\ e^{-2j\pi \mathbf{k}^T(\theta, \phi, f)\mathbf{m}_I/\lambda} \end{bmatrix}$$

## **Angular sectors**

## Setting

- $\triangleright$  Each signal  $\mathbf{x}(f)$  contains information from all directions.
- $\,\,
  ightharpoons\,$  In practice (meetings), speakers are located around the microphone array.

#### **Angular sectors**

#### Setting

- $\triangleright$  Each signal  $\mathbf{x}(f)$  contains information from all directions.
- ▷ In practice (meetings), speakers are located around the microphone array.

#### Main idea

- $\triangleright$  Partition the space into S angular sectors  $\Psi_s$ ,  $s \in [1, S]$ .
- ightharpoonup Design a spatial filter  $\mathbf{w}_s(f) \in \mathbb{C}^I$  for each angular sector.
- riangleright Filter the input data to get a set of sector-specific signals:  $\mathbf{y}(f) = \mathbf{W}^H(f)\mathbf{x}(f) \in \mathbb{C}^S$



# **Data-independent beamforming**

Data-independent beamforming: find a filter  $\mathbf{w}(f)$  whose spatial response  $\mathbf{w}(f)^H \mathbf{d}(\theta, \phi, f)$  is close to a predefined target response  $b^{\text{tgt}}(\theta, \phi, f)$ .

$$\underset{\mathbf{w}(f)}{\arg\min} \int_{\Omega} |\mathbf{w}(f)^{H} \mathbf{d}(\theta, \phi, f) - b^{\mathsf{tgt}}(\theta, \phi, f)|^{2} \cos\theta d\theta d\phi$$

# **Data-independent beamforming**

Data-independent beamforming: find a filter  $\mathbf{w}(f)$  whose spatial response  $\mathbf{w}(f)^H \mathbf{d}(\theta, \phi, f)$  is close to a predefined target response  $b^{\text{tgt}}(\theta, \phi, f)$ .

$$\underset{\mathbf{w}(f)}{\arg\min} \int_{\Omega} |\mathbf{w}(f)^{H} \mathbf{d}(\theta, \phi, f) - b^{\mathsf{tgt}}(\theta, \phi, f)|^{2} \cos\theta d\theta d\phi$$

Extensive literature (Vincent et al. 2018) on possible solutions.

- ▷ Choice for the predefined target.
- ▶ Particular microphone array geometries (e.g., linear, circular).
- ▷ Numerical approximation schemes / filter design.

# **Proposed solution**

Proposal: a sector-specific target response.

$$\forall s \in [1, S], \quad b_s^{\mathsf{tgt}}(\theta, \phi, f) = \begin{cases} 1 & \text{if} \quad (\theta, \phi) \in \Psi_s, \\ 0 & \text{otherwise.} \end{cases}$$

- $\triangleright$  Expected to isolate speaker(s) located in sector s.



# **Proposed solution**

Proposal: a sector-specific target response.

$$\forall s \in [1,S], \quad b_s^{\mathsf{tgt}}(\theta,\phi,f) = \begin{cases} 1 & \text{if} \quad (\theta,\phi) \in \Psi_s, \\ 0 & \text{otherwise}. \end{cases}$$

- ▷ The exact position (DOA) of each speaker is not needed.
- $\triangleright$  Expected to isolate speaker(s) located in sector s.

Solution in closed form:

$$\mathbf{w}_s(f) = \left(\int_{\Omega} \cos \theta \times \mathbf{d}(\theta, \phi, f) \mathbf{d}(\theta, \phi, f)^H d\theta d\phi\right)^{-1} \times \int_{\Psi_s} \cos \theta \times \mathbf{d}(\theta, \phi, f) d\theta d\phi$$

- $\triangleright$  Only requires to approximate the integral (we use a step size of  $1^{\circ}$ ).
- ▷ Applicable to every microphone array geometry.

В

## Beamformer response

#### Proposed sectors

- $\triangleright S = 4$ , but it can be chosen freely.
- $\triangleright$  Elevation  $\phi$  is kept in a realistic range  $[10^{\circ}, 60^{\circ}]$ .
- ▶ Azimuth range is split into four equal-size quadrants.

Filter response in the  $[45^{\circ}, 135^{\circ}]$  angular sector, 4-microphones circular array.

- Degradation above 2 kHz.
- ▷ At high elevation, response from the opposite sector.





## Beamformer response

#### Proposed sectors

- $\triangleright S = 4$ , but it can be chosen freely.
- $\triangleright$  Elevation  $\phi$  is kept in a realistic range  $[10^{\circ}, 60^{\circ}]$ .
- ▷ Azimuth range is split into four equal-size quadrants.

Filter response in the  $[45^{\circ}, 135^{\circ}]$  angular sector, 4-microphones circular array.

- ▶ High spatial response within the target sector.
- ▷ Degradation above 2 kHz.
- ▷ At high elevation, response from the opposite sector.

Using 8 microphones: sharper response up to 4 kHz.





# System overview



#### ASR system (Yu et al. 2023):

- ▷ Core part: a multi-frame cross-channel attention (MFCCA) mechanism to handle multichannel signals.
- Output: a single stream of transcript for all speakers, with a speaker change token
   sc> between utterances.



 ${\scriptstyle \mathsf{Image from}\,\big(Yu\ et\ al.\ 2023\big)}$ 

# **Experiments**

#### **Protocol**

- 1. Pretraining on a large set of simulated mixtures: Librispeech.
- 2. Fine-tuning on a smaller set of real meeting recordings: Real AMI.

#### **Protocol**

- 1. Pretraining on a large set of simulated mixtures: Librispeech.
- 2. Fine-tuning on a smaller set of real meeting recordings: Real AMI.
- ▷ Circular array, 4 or 8 microphones.
- ▶ Ensure no overlapping speakers at the beginning / end of each utterance.



#### **Protocol**

- 1. Pretraining on a large set of simulated mixtures: Librispeech.
- 2. Fine-tuning on a smaller set of real meeting recordings: Real AMI.
- ▷ Circular array, 4 or 8 microphones.
- ▶ Ensure no overlapping speakers at the beginning / end of each utterance.



#### Serialized output training

- ▷ Reference transcripts are build by inserting <sc> between references utterance labels.
- ▷ Sort speakers utterances by starting time (first-in first-out).
- ▶ Minimize the cross entropy between true / estimated serialized transcript.

# Results: signal quality



- ▶ Noise / reverberation reduction in the beamformed signals.
- ▶ Enhances a specific speaker (the one located in the sector) and reduces interferring speakers.
- ▶ Better formant preservation / enhancement when using 8 microphones over 4.

# **Speaker counting**

#### Confusion score:



- > Similar performance when there are few speakers (1 or 2).
- ▶ The proposed beamforming improves speaker counting for large numbers of speakers.

# **ASR** performance

Word error rate (lower is better):

| Beamforming | # Mics | 1-speaker | 2-speaker | 3-speaker | Average |
|-------------|--------|-----------|-----------|-----------|---------|
| None        | 4      | 25.89     | 41.70     | 54.68     | 45.25   |
| Proposed    | 4      | 24.52     | 39.61     | 52.19     | 43.14   |
|             | 8      | 22.96     | 40.01     | 49.59     | 41.64   |

- > Improvements of the beamforming over the unprocessed signals.
- ▷ Beamforming with 8 mics is better than with 4 mics.
  - ▷ Sector-wise enhancement is better, which in turns improves ASR performance.

## **Comparison to MVDR**

MVDR = Minimum Variance Distortionless Response beamformer.

▶ Returns 1 reference signal, then single-channel ASR.

# **Comparison to MVDR**

MVDR = Minimum Variance Distortionless Response beamformer.

▷ Returns 1 reference signal, then single-channel ASR.

| Beamforming | # Mics | 1-speaker | 2-speaker | 3-speaker | Average |
|-------------|--------|-----------|-----------|-----------|---------|
| None        | 4      | 25.89     | 41.70     | 54.68     | 45.25   |
| MVDR        | 4      | 25.11     | 40.07     | 54.17     | 44.43   |
|             | 8      | 26.35     | 42.13     | 55.89     | 46.08   |

> MVDR improves performance over no beamforming.

## **Comparison to MVDR**

MVDR = Minimum Variance Distortionless Response beamformer.

▶ Returns 1 reference signal, then single-channel ASR.

| Beamforming | # Mics | 1-speaker | 2-speaker | 3-speaker | Average |
|-------------|--------|-----------|-----------|-----------|---------|
| None        | 4      | 25.89     | 41.70     | 54.68     | 45.25   |
| MVDR        | 4      | 25.11     | 40.07     | 54.17     | 44.43   |
|             | 8      | 26.35     | 42.13     | 55.89     | 46.08   |
| Proposed    | 4      | 24.52     | 39.61     | 52.19     | 43.14   |
|             | 8      | 22.96     | 40.01     | 49.59     | 41.64   |

- ▶ MVDR improves performance over no beamforming.
- ▶ The proposed beamformer outperforms MVDR.



**Conclusion** 

#### Conclusion



#### Conclusion



#### Perspectives

- ▶ Adapt and evaluate in more diverse situations: moving sources, alternative arrays.
- ▶ Automatic determination of the optimal number and/or geometry of the sectors.

#### References i

- Kanda, N. et al. (2023). "Vararray Meets T-Sot: Advancing the State of the Art of Streaming Distant Conversational Speech Recognition". In: Proc. of IEEE ICASSP.
- Masuyama, Y. et al. (2023). "End-to-end integration of speech recognition, dereverberation, beamforming, and self-supervised learning representation". In: Proc. of IEEE SLT.
- Raj, D. et al. (2021). "Integration of speech separation, diarization, and recognition for multi-speaker meetings: System description, comparison, and analysis". In: Proc. of IEEE SLT.
- Vincent, E. et al. (2018). Audio Source Separation and Speech Enhancement. John Wiley & Sons. Yu, F. et al. (2023). "MFCCA: Multi-frame cross-channel attention for multi-speaker ASR in

multi-party meeting scenario". In: Proc. of IEEE SLT.