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Audio source separation

Audio signals are composed of several constitutive sounds.

▷ multiple speakers, background noise, domestic sounds, musical instruments . . .

Source separation or Demixing = recovering the sources from the mixture.

▷ An important preprocessing for many downstream tasks.

▷ Automatic speech recognition.

▷ Music transcription / information retrieval.

▷ Acoustic scene analysis / sound event detection.

▷ A goal in itself for synthesis purposes.

▷ Augmented mixing, e.g., from mono to stereo.

▷ Backing track generation / karaoke.

Beyond audio: Biomedical signals, astronomy imaging, fluorescence spectroscopy, etc.
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A difficult task?

Mixing is easy . . .

but demixing is not.

Finding {sj ∈ RN}Jj=1 such that x =

J∑
j=1

sj is an under-determined problem.

+ domain-specific challenges: correlated music sources, speaker variability, reverberation/noise. . .

▷ Need to incorporate additional information / constraints / structure.

▷ Either via expert knowledge or by leveraging data.
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Setting the stage

The raw material are audio signals sj

, but we rather consider a time-frequency representation.
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▷ A popular choice: the short-time Fourier transform (STFT).

▷ The mixture model becomes X =

J∑
j=1

Sj ∈ CF×T .

STFT

Audio signal

Spectrogram Phase
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The separation pipeline

Transform Synthesis
Separation model

The separator consists of a spectral model:

▷ A (linear) low-rank / matrix factorization approximation, with some constraints, e.g., statistical

independance, sparsity, nonnegativity.

▷ A nonlinear model based on deep neural networks (DNNs).

Synthesis is performed by inverse STFT on top of:

▷ Spectral and/or spatial filtering (e.g., Wiener filtering).

▷ A phase recovery / spectrogram inversion stage.

4



The separation pipeline

Transform Synthesis
Separation model

The separator consists of a spectral model:

▷ A (linear) low-rank / matrix factorization approximation, with some constraints, e.g., statistical

independance, sparsity, nonnegativity.

▷ A nonlinear model based on deep neural networks (DNNs).

Synthesis is performed by inverse STFT on top of:

▷ Spectral and/or spatial filtering (e.g., Wiener filtering).

▷ A phase recovery / spectrogram inversion stage.

4



The separation pipeline

Transform Synthesis
Separation model

The separator consists of a spectral model:

▷ A (linear) low-rank / matrix factorization approximation, with some constraints, e.g., statistical

independance, sparsity, nonnegativity.

▷ A nonlinear model based on deep neural networks (DNNs).

Synthesis is performed by inverse STFT on top of:

▷ Spectral and/or spatial filtering (e.g., Wiener filtering).

▷ A phase recovery / spectrogram inversion stage.
4



The NMF trend

Let’s have some fun on IEEE Xplore!

▷ Search for papers whose title contains “nonnegative matrix factorization”, up to variations

(“non-negative” instead of “nonnegative”, “NMF”, etc.).

▷ Filter publication topics containing “source separation” and variants (“blind source separation”,

“music separation”, etc.).
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The rise



Nonnegative matrix factorization (NMF)

Given a (nonnegative) data matrix V ∈ RF×T , find a factorization WH such that the factors

W ∈ RF×K and H ∈ RK×T are low-rank (K ≪ min(F, T )) and nonnegative.

▷ V is usually a magnitude |X| or power |X|2 spectrogram.

▷ W is a dictionary of spectral atoms.

▷ H is a matrix of temporal activation.

Nonnegativity favors:

▷ interpretability of the factors.

▷ a part-based decomposition of the data. atoms

activations

6



NMF for (blind) source separation

Exploit additivity for getting each source spectrogram.

V ≈WH =

J∑
j=1

WjHj =

J∑
j=1

Vj

Procedure

1. Factorize the mixture’s spectrogram (i.e., find W

and H by solving the optimization problem).

2. Cluster atoms wk that belong to the same source

to build source-specific matrices: Wj = {wk}k∈Kj

3. Multiply each dictionary with the corresponding

activations to retrieve each source spectrogram.
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Introducing supervision

Assume a set of isolated source signals is available (= a training dataset).

▷ Pretrain each source dictionary from the corresponding isolated spectrogram Vpretrain
j :

Wpretrain
j = argmin

W,H
D(Vpretrain

j ,WH)

▷ On the mixture, fix the dictionaries and only estimate the activation:

[H1, . . . ,HJ ] = argmin
H

D(V, [Wpretrain
1 , . . . ,Wpretrain

J ]H)

▷ Retrieve each source’s spectrogram via Vj = Wpretrain
j Hj .
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Estimation - problem setting

Optimization-based model estimation:

min
W≥0,H≥0

D(V,WH) + regularizations

The literature is (very) abundant (Gillis 2020).

NMF with the beta-divergences (Févotte et al. 2009)

D(V,WH) =
∑
f,t

dβ(vf,t, [WH]f,t)

▷ Interesting in audio: (quasi)-scale invariance, better fits

human perception.

▷ Popular special cases:

▷ Euclidean distance (β = 2).

▷ Kullback-Leibler (KL) divergence (β = 1).

▷ Itakura-Saito (IS) divergence (β = 0).

1

dβ(x, y) =

xβ + (β − 1)yβ − βxyβ−1

β(β − 1)
β ∈ R\{0, 1}

x log
x

y
+ y − x β = 1

x

y
− log

x

y
− 1 β = 0
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Estimation via majorization-minimization (MM)

Procedure to minimize ϕ:

▷ Given a current estimate θ(k), construct a majorizing function ϕ+ of ϕ

that is tight at θ(k).

▷ Minimize ϕ+ to get an updated estimate θ(k+1).

▷ Then ϕ(θ(k+1)) ≤ ϕ(θ(k)).

For NMF (Févotte et al. 2011)

▷ The divergence is split into a convex and a concave part.

▷ Majorization using convexity and tangent inequalities.

▷ Solving yields multiplicative updates.

▷ Convergence-guaranteed, no hyperparameter to tune.

W←W · (V · [WH]β−2)HT

[WH]β−1HT

H← H ·W
T (V · [WH]β−2)

WT [WH]β−1
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Refining the model

Regularizations injected in the optimization problem as soft penalties.

min
W≥0,H≥0

D(V,WH) + λR

▷ Sparsity of the activations (Le Roux et al. 2015b): R(H) =
∑

k,t hk,t

▷ Temporal smoothness (Virtanen 2007): R(H) =
∑

k,t(hk,t − hk,t−1)
2

or model variants where the constraint is hard-coded.

▷ Harmonic spectra (Bertin et al. 2010): wf,k =
∑

m em,kPk,m,f where

patterns Pk,m contain equally-spaced partials.

▷ Orthogonality (Choi 2008) of the activations HHT = I or the

spectra WTW = I.

▷ Convolutive NMF (O’Grady et al. 2006): V ≈W ⊛H, where

W ∈ RF×K×L contains time-varying templates.

Source: (Bertin et al. 2010)

Source: (O’Grady et al. 2006)
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An example: complex NMF

NMF-based spectrogram decomposition

|X| ≈WH =

J∑
j=1

WjHj

▷ Additivity of the sources’ magnitudes / phase is ignored.

▷ Limiting assumption when sources overlap.

Time

Fr
eq

ue
nc

y

Bass

Time

Drums

Time

Mixture

Time

Overlap map

Complex NMF (Kameoka et al. 2009)

✓ Assumes additivity of the sources’ STFTs, and factorizes each source’s magnitude.

X ≈
J∑

j=1

WjHje
iµj

−−−−−−→
estimation

min
W,H,µ

||X−
J∑

j=1

[WjHj ]e
iµj ||2 + C(µ)

▷ Model-based phase regularizations (Le Roux et al. 2009; Bronson et al. 2014; Magron et al. 2016).
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Extending complex NMF to beta-divergences

▷ NMF can be estimated using a variety of loss functions (e.g., beta-divergences).

▷ Complex NMF is estimated using the Euclidean distance.

▷ Most beta-divergences are defined for nonnegative quantities only.

Problem: How to extend complex NMF to non-Euclidean losses?

A probabilistic view on NMF (Simsekli et al. 2013)

▷ NMF can be used in a probabilistic model to structure some distribution’s parameter.

▷ Maximum likelihood estimation yields a loss function that depends on the statistical model.

Variable Distribution Model Parametrization Loss

Euc. NMF Magnitude (Real) Gaussian N (m,σ2) m = wh Euclidean

KLNMF Magnitude Poisson P(v) v = wh Kullback-Leibler

ISNMF STFT Isotropic Gaussian NC(0, v
2I) v2 = wh Itakura-Saito

Complex NMF STFT Isotropic Gaussian NC(m,σ2I) m = wheiµ Euclidean

13
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Complex ISNMF (Magron et al. 2019; Magron et al. 2018)

From isotropic sources (ISNMF)

to anisotropic sources (Complex ISNMF).

Γj =

(
wjhj 0

0 wjhj

)

▷ Non-zero relation parameter: the phase is no longer uniform.

▷ λ / ρ adjust the importance of the phase.

▷ Prior on the phase parameters µj (e.g., Markov chain).

sj ∼ NC(0,Γj)

Isotropic

Anisotropic

Estimation via expectation-maximization:

▷ E-step: compute the posterior moments.

▷ M-step: an IS divergence minimization problem.

✓ Outperforms complex NMF and ISNMF.
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The fall



What happened?

Some limitations of NMF:

▷ Spectrograms are perhaps not low-rank.

▷ Interactions between spectral templates and

activations are perhaps not linear.

Enter the deep learning era.

▷ Abundance of large-scale datasets.

▷ Computing capabilities (GPUs) have exploded.

▷ Efficient training algorithms (backpropagation).

▷ User-friendly frameworks (Pytorch, Keras)
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Deep neural networks (DNNs)

Model: a mapping function g with parameters θ: y ≈ gθ(x)

▷ Inputs x / outputs y are high-dimensional audio data, e.g.,

spectrograms for source separation.

▷ gθ is built by assembling elementary neurons, e.g.:

x(l+1) = σ(W(l)x(l) + b(l))

▷ For source separation |θ| ∼ 107 − 108.

▷ Many possible neural architectures: MLP, CNN, RNN, etc.

Source: ScienceDirect

Supervised learning

▷ A training dataset = a collection of input/output pairs {xi,yi}Ii=1.

▷ The parameters of the network are learned via: minθ
∑I

i=1 L(yi, gθ(xi)).

▷ Solved with a stochastic gradient descent algorithm (e.g., ADAM).

16
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A paradigm shift

From expert knowledge research

▷ How do I refine this model to overcome its

limitation (e.g., convolutive NMF)?

▷ Which regularization would fit this

intrument (sparsity, (in)harmonicity)?

▷ How do I model it mathematically (trade-off

between complexity and generalizability)?

▷ Which loss would be more

perceptually-relevant?

▷ How do I (efficiently) solve the new

optimization problem?

to data-driven model engineering.

▷ Which architecture would be more

powerful?

▷ Should I re-test every hyperparameter value

upon a minor additional change?

▷ How can I parallelize / reduce training time

/ optimally use my hardware?

▷ How can I use more data / better exploit

my available data / cope with data scarcity?

17
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A few architectures

Source: (Huang et al. 2014)
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A few architectures

Source: (Chandna et al. 2017)
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A few architectures

Source: (Drossos et al. 2018)
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A few architectures

Source: (Défossez 2021)
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A few architectures

Source: (Yang et al. 2023)
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A few architectures

Source: (Rouard et al. 2023)
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Results

Impressive performance

Vocals Bass Drums Guitar

UMX (2018)

BSRNN (2023)

A few drawbacks . . .

▷ Black boxes / lack of interpretability.

▷ Difficult to adapt to new tasks.

▷ Energy / environmental costs.

▷ Exacerbates the reproductibility crisis.

Source: (Lu et al. 2024)

Source: Coming soon...
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What to do then?

The rise and fall

▷ A paradigm shift from expert knowledge research to data-driven model engineering.

▷ Clear pros and cons for both approaches.

The obvious solution: combine them.

▷ Not exactly breaking news.

▷ But still relevant!

▷ (Beyond source separation,) many

recent works combine DNNs and

factorization / low-rank models.

Source: Vincent, “Is audio signal processing still useful in the era of machine

learning?”, 2015.

20
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A resurgence?



Low-rank weights

Main idea: enforce the weights of a neural network to be low-rank.

▷ Either at training, inference, or for fine-tuning.

▷ Allows to achieve significant size reduction.

Early examples (in audio / speech!), replacing one or more layers’ weights with two low-rank

independent factors. Yields a 30-75 % size reduction.

▷ The first layer’s weights correspond to low-level filters that

have a simple structure (Nakkiran et al. 2015).

▷ Output dimension is very large (for speech recognition), so

the last layer tends to be overparametrized (Sainath et al. 2013).

▷ Or just apply SVD everywhere (Xue et al. 2013). Source: (Nakkiran et al. 2015)
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Low-rank weights

Large networks compression has motivated more recent approaches:

▷ Exploiting orthogonality constraints (Povey et al. 2018).

▷ Sparse SVD (Swaminathan et al. 2020) and other SVD variants (Cai et al. 2023).

▷ Adapting the rank to each layer (Idelbayev et al. 2020).

Low-rank regularization implicitly, e.g. via a nuclear norm penalty (Scarvelis et al. 2024).

LLM fine-tuning in particular poses computational challenges. The LoRA method (Hu et al. 2021):

▷ Does not approximate all weights, but only an additional

term that corresponds to fine-tuning.

Wfinetuned = Wpretrained +∆ with ∆ = AB

▷ Reduces the amount of trainable parameters (in the

fine-tuning stage) by a large factor (10000). Source: (Hu et al. 2021)
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Deep NMF

Deep unfolding (or unrolling)

▷ Each algorithm’s iteration = one layer of a neural network.

▷ Train via backpropagation through the unfolded algorithm.

▷ Lighter and more interpretable networks.

Deep NMF (Le Roux et al. 2015a)

H(l+1) = H(l) · (W
(l))T (V · [W(l)H(l)]β−2)

(W(l))T [W(l)H(l)]β−1

▷ H(l) is the output of the l-th layer.

▷ W(l) are the learnable weights of the l-th layer.

A very active research topic!

▷ Unfolding other update schemes: ISTA (Wisdom et al. 2017), ALS (Xiong et al. 2022).

▷ Unfold both factor updates and add other learnable parameters (Kervazo et al. 2024).

▷ Adapt the loss / formulate alternative optimization problems (Leplat et al. 2024).
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Factorized latent space

Main idea: learn a transformation of the data such that the low-rank asumption better holds.

▷ Early approach, purely optimization-based (Fagot et al. 2018).

min
Φ is orthogonal,W≥0,H≥0

D(|Φ(x)|2,WH)

▷ More recently: a variational auto-encoder and a (fixed) latent dictionary (Sadeghi et al. 2022).

   DecoderEncoder =X

Perspective: learning both factors and the DNN jointly.

min
θ,W≥0,H≥0

D(Φθ(x),WH)

▷ A connexion with disentangled latent spaces (Luo et al. 2024).
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NMF + deep models

Additional approaches combine (nonnegative) matrix factorization and DNNs for flexible modeling.

Deep prior: Regularizing a factorization model with a DNN.

▷ For image denoising (Lin et al. 2020), restoration (Chen et al. 2022).

▷ Recommender systems (Magron et al. 2022), where deep acoustic

features regularize an item embedding:

min ||R−WH||2 + λ
∑
i

||hi − DNN(xi)||2

Predicted rating

Item index Acoustic content

extractor

Content feature

Layer P

...

Layer 0

User index

embedding

User

embedding

Item

Dot product

Hybrid models optimally leverage DNNs and NMF, e.g. for speech enhancement (Leglaive et al. 2018).

X = S+N with S = DNN︸ ︷︷ ︸
speech

and N = WH︸ ︷︷ ︸
noise

25
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Conclusion

▷ NMF has been particularly successful for source separation until the mid 2010s.

▷ Then, it declined as deep learning has shown powerful for solving signal processing problems.

▷ But this comes with some drawbacks: black boxes, energy costs, reproductibility crisis, etc.

Key message

Combining expert knowledge and data-driven models:

a promising approach for machine leaning / source separation research.

▷ Enable networks to exploit prior information.

▷ Improve their robustness and reduce their size.

▷ More interpretable and principled networks.
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Useful ressources
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