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Beyond audio: Biomedical signals, astronomy imaging, fluorescence spectroscopy, etc.
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Finding {s; € RN}jzl such that x = Zsj is an under-determined problem.
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+ domain-specific challenges: correlated music sources, speaker variability, reverberation/noise. . .

> Need to incorporate additional information / constraints / structure.

> Either via expert knowledge or by leveraging data.
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Spectrogram

> A popular choice: the short-time Fourier transform (STFT).
Audio signal

. ’ ’ STFT

J
> The mixture model becomes X = ZSj c CHxT,
j=1
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The separator consists of a spectral model:

> A (linear) low-rank / matrix factorization approximation, with some constraints, e.g., statistical
independance, sparsity, nonnegativity.

> A nonlinear model based on deep neural networks (DNNs).
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The separator consists of a spectral model:

> A (linear) low-rank / matrix factorization approximation, with some constraints, e.g., statistical
independance, sparsity, nonnegativity.

> A nonlinear model based on deep neural networks (DNNs).
Synthesis is performed by inverse STFT on top of:

> Spectral and/or spatial filtering (e.g., Wiener filtering).

> A phase recovery / spectrogram inversion stage.
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> Search for papers whose title contains “nonnegative matrix factorization”, up to variations
(“non-negative” instead of “nonnegative”, “NMF", etc.).

> Filter publication topics containing “source separation” and variants ("blind source separation”,
“music separation”, etc.).
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Nonnegative matrix factorization (NMF)

Given a (nonnegative) data matrix V € RF %7 find a factorization WH such that the factors
W € RFXE and H € REXT are low-rank (K < min(F,T)) and nonnegative.

> V is usually a magnitude |X| or power |X|? spectrogram.

> W is a dictionary of spectral atoms.

> H is a matrix of temporal activation.

activations [\\
Nonnegativity favors: ‘
> interpretability of the factors. V ~WH %
o L E
> a part-based decomposition of the data. atoms =
=
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Assume a set of isolated source signals is available (= a training dataset).

> Pretrain each source dictionary from the corresponding isolated spectrogram V?retra'":

W?retram — arg min D(V?retraln’ WH)
W, H

> On the mixture, fix the dictionaries and only estimate the activation:

[Hl, R 7H‘]] = argénin D(V, [VVFl"etf'~'=1in7 o 7W5r6train]H)

. . trai
> Retrieve each source's spectrogram via V; = WE""H;.
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Estimation - problem setting

Optimization-based model estimation:

min  D(V,WH) + regularizations
W>0,H>0

The literature is (very) abundant (Gillis 2020).
NMFE with the beta-divergences (Févotte et al. 2009)

D(V,WH) = "ds(vss, [WH],)

fit
> Interesting in audio: (quasi)-scale invariance, better fits dg(z,y) =
human perception. af 4 (B = 1)yP — BayP~! 5 eR\{0,1}
. BB —1) ’
> Popular special cases: .
z log ; +y—x s=1

> Euclidean distance (8 = 2). . .
> Kullback-Leibler (KL) divergence (8 = 1). v logg -1 g=0
> ltakura-Saito (IS) divergence (8 = 0).
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Estimation via majorization-minimization (MM)

Procedure to minimize ¢:

> Given a current estimate #%), construct a majorizing function ¢+ of ¢

that is tight at (%)

> Minimize ¢ to get an updated estimate §(F+1)
> Then ¢(8*+1)) < ¢(9*).

For NMF (Févotte et al. 2011)
> The divergence is split into a convex and a concave part.
> Majorization using convexity and tangent inequalities.
> Solving yields multiplicative updates.

> Convergence-guaranteed, no hyperparameter to tune.

gk+1) (k)

(V- [WH]*~2)HT

Wew.
< [WH]?—TH”

WV [WH]2)

H«H
< WI[WH]F-
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Refining the model

Regularizations injected in the optimization problem as soft penalties.

min  D(V,WH) + AR
W>0,H>0

> Sparsity of the activations (Le Roux et al. 2015b): R(H) = 37} ; hu ¢

> Temporal smoothness (Virtanen 2007): R(H) = Zk,t(hk,t — hg—1)?

or model variants where the constraint is hard-coded.

> Harmonic spectra (Bertin et al. 2010): Wy} = Zm €m,kPi,m,f where
patterns Py ,,, contain equally-spaced partials.

> Orthogonality (Choi 2008) of the activations HH? = I or the
spectra WTW =1

> Convolutive NMF (0'Grady et al. 2006): V ~ W & H, where
W € RFXEXL contains time-varying templates.
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An example: complex NMF

NMF-based spectrogram decomposition

J
X|~WH =) W,H,

j=1

Bass Drums Mixture

Overlap map

Frequency

Bzl

> Additivity of the sources’ magnitudes / phase is ignored.

> Limiting assumption when sources overlap.
Complex NMF (Kameoka et al. 2009)

v/ Assumes additivity of the sources’ STFTs, and factorizes each source’'s magnitude.

J J

~ il , CONCIWOHL T (2 4 ()
X lenge Ty Win X Zl[WJHJ]e 12+ Cp)
J= J=

> Model-based phase regularizations (Le Roux et al. 2009; Bronson et al. 2014; Magron et al. 2016).
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A probabilistic view on NMF (Simsekli et al. 2013)

> NMF can be used in a probabilistic model to structure some distribution’s parameter.

> Maximum likelihood estimation yields a loss function that depends on the statistical model.
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> NMF can be estimated using a variety of loss functions (e.g., beta-divergences).

v

Complex NMF is estimated using the Euclidean distance.

v

Most beta-divergences are defined for nonnegative quantities only.
: How to extend complex NMF to non-Euclidean losses?

(Simsekli et al. 2013)

v

NMF can be used in a probabilistic model to structure some distribution’s parameter.

> Maximum likelihood estimation yields a loss function that depends on the statistical model.

Variable Distribution Model Parametrization Loss
Euc. NMF Magnitude  (Real) Gaussian N(m,o?) m = wh Euclidean
KLNMF Magnitude  Poisson P(v) v = wh Kullback-Leibler
ISNMF STFT Isotropic Gaussian N (0,v21) v2 = wh Itakura-Saito

Complex NMF  STFT Isotropic Gaussian ~ Ng(m,o2I) m = whe'* Euclidean
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From isotropic sources (ISNMF) to anisotropic sources (Complex ISNMF).
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Complex ISN MF (Magron et al. 2019; Magron et al. 2018)

From isotropic sources (ISNMF) to anisotropic sources (Complex ISNMF).

sj ~ Nc(0,T)

Isotropic Anisotropic

r.— Aw;h, pw;h;e?iHi
T pwjh,j€72ill-’ /\U)jhj

. . . v
> Non-zero relation parameter. the phase is no longer uniform. b o

> A / p adjust the importance of the phase.

> Prior on the phase parameters 1 (e.g., Markov chain). \ |

Estimation via expectation-maximization:

> E-step: compute the posterior moments.
> M-step: an IS divergence minimization problem.
v/~ Outperforms complex NMF and ISNMF.
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What happened?

The separation pi e

Some limitations of NMF:

> Spectrograms are perhaps not low-rank.

> Interactions between spectral templates and T o o B t -
activations are perhaps not linear. R o e
> Synthesis is performed by inverse STFT oA Topo
& Spectral and/or spatial (e.g., Wiener filtering).
> A / spectrogram inversion stage.
Enter the deep learning era. "
> Abundance of large-scale datasets. -
> Computing capabilities (GPUs) have exploded. I
> Efficient training algorithms (backpropagation). LI
> User-friendly frameworks (Pytorch, Keras) e TP e AR SR



Deep neural networks (DNNs)

Model: a mapping function g with parameters 0: y & gy(x)

> Inputs x / outputs y are high-dimensional audio data, e.g.,
spectrograms for source separation.

Network

Activation function
input function

> gg is built by assembling elementary neurons, e.g.:
<+ — (W(l +p® )

> For source separation || ~ 107 — 108. Source: ScienceDirect

> Many possible neural architectures: MLP, CNN, RNN, etc.


https://www.sciencedirect.com/topics/engineering/perceptron

Deep neural networks (DNNs)

Model: a mapping function g with parameters 0: y & gy(x)

> Inputs x / outputs y are high-dimensional audio data, e.g.,
spectrograms for source separation.

Network

Activation function
input function

> gg is built by assembling elementary neurons, e.g.:
<+ — (W(l +b® )
> For source separation || ~ 107 — 108. Source: ScienceDirect
> Many possible neural architectures: MLP, CNN, RNN, etc.
Supervised learning

> A training dataset = a collection of input/output pairs {xi,yi}i[:l.
> The parameters of the network are learned via: ming Zle L(yi,90(%:)).

> Solved with a stochastic gradient descent algorithm (e.g., ADAM).


https://www.sciencedirect.com/topics/engineering/perceptron

A paradigm shift

From expert knowledge research

> How do | refine this model to overcome its
limitation (e.g., convolutive NMF)?

> Which regularization would fit this
intrument (sparsity, (in)harmonicity)?

> How do | model it mathematically (trade-off
between complexity and generalizability)?

> Which loss would be more
perceptually-relevant?

> How do | (efficiently) solve the new
optimization problem?



A paradigm shift

From expert knowledge research to data-driven model engineering.

> How do | refine this model to overcome its > Which architecture would be more
limitation (e.g., convolutive NMF)? powerful?

> Which regularization would fit this > Should | re-test every hyperparameter value
intrument (sparsity, (in)harmonicity)? upon a minor additional change?

> How do | model it mathematically (trade-off > How can | parallelize / reduce training time
between complexity and generalizability)? / optimally use my hardware?

> Which loss would be more > How can | use more data / better exploit
perceptually-relevant? my available data / cope with data scarcity?

> How do | (efficiently) solve the new
optimization problem?
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A few architectures
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A few architecture

Mixture Singing Voice

STFT Analysis

Initial phase

‘Output processing

Denoiser Loss
Calculation

 segaton | |

] e, [

T ! TwinNet

The Masker.

Source: (Drossos et al. 2018)



A few architectures

Decoder;_; or output

Decoder; (Cin = 100, Cour = 4 % 2) Relu(ConvTrld(Ciy, Cour, K = 8,5 = 4))
Decoders (Cin = 200, Cour = 100) GLU(Convld(Cin, 2Cin, K = 3,5 = 1))
Decoders(Cin = 3200, Clows = 1600) [Bucoder;]  [Decoder; 1 or LST™)

[ Lincar(Ci, = 6400, Cour = 3200) |

hidden size=3200
2 bidirectional layers | Decoder, I | Fncoders s or LSTM|

Encoderg (Ci, = 1600, C,ue = 3200)

[ GLU(Conv1d(Cout, 2Cou, K = 1,5 = 1)) |

Relu(Convid(Cin, Cour, K = 8,5 = 4))

Encoder,(Cyy, = 100, Cypy = 200)
Encodery (Cin = 2, Cou = 100)

Source: (Défossez 2021)




A few architectures
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Positional Ry Positional
Encoding Encoding
Linear

= Encoder x6
Bottleneck x4

Preprocessing

Mixture Source

Source: (Yang et al. 2023)



A few architectures
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Impressive performance

v Vocals Bass Drums  Guitar
UMX (2018) A v < v
BSRNN (2023) ¥ v < v

A few drawbacks ...
> Black boxes / lack of interpretability.
> Difficult to adapt to new tasks.
> Energy / environmental costs.

> Exacerbates the reproductibility crisis.

‘We trained three separation models respectively for vocals, bass,
and drums using In-House and the Musdb18HQ training set. For the
“other” stem, we subtracted the vocals, bass, and drums signals from
the input mixture in the time domain. For each model, the training
process lasted for 4 weeks using 16 Nvidia A100-80GB GPUs with a
total batch size of 128 (i.e., 8 for each GPU). The model checkpoint
with the best validation result was selected.

Source: (LU et al. 2024)

The Costs of Reproducibility in Music Separation
Research: a Replication of Band-Split RNN

Paul Magron, Romain Serizel, Constance Douwes

lator [36], which approximates energy consumption base:
on hardware specifications (we consider a 3 W power pe
8 GB of memory).? This amounts to 19,030 kWh, whic
is more than 44 times the energy consumption of trainin
the best model, or 150 times that of the base model.

In all fairness, part of this cost is due to our own im
plementation errors, which resulted in, e.g., interrupted ¢
redundant training runs. However, we believe that mos

e tad e At il e et bt Tt e

Source: Coming soon...



What to do then?

The rise and fall

> A paradigm shift from expert knowledge research to data-driven model engineering.

> Clear pros and cons for both approaches.
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What to do then?

The rise and fall

> A paradigm shift from expert knowledge research to data-driven model engineering.

> Clear pros and cons for both approaches.

..and some saw a great opportunity!

The obvious solution: combine them.

I need more data and domain
knowledge to progress. Would
you help me?

> Not exactly breaking news.

> But still relevant!

> (Beyond source separation,) many Let's work together!
. We need your modeling
recent works combine DNNs and power to progress too.

factorization / low-rank models.

| P isenn 217005 12

Source: Vincent, “Is audio signal processing still useful in the era of machine
learning?”, 2015.
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A resurgence?



Low-rank weights

Main idea: enforce the weights of a neural network to be low-rank.

> Either at training, inference, or for fine-tuning.

> Allows to achieve significant size reduction.
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Low-rank we

Main idea: enforce the weights of a neural network to be low-rank.

> Either at training, inference, or for fine-tuning.
> Allows to achieve significant size reduction.

Early examples (in audio / speech!), replacing one or more layers’ weights with two low-rank
independent factors. Yields a 30-75 % size reduction.

> The first layer's weights correspond to low-level filters that
have a simple structure (Nakkiran et al. 2015).

> Output dimension is very large (for speech recognition), so

the last layer tends to be overparametrized (Sainath et al. 2013).

> Or just apply SVD everywhere (Xue et al. 2013). Source: (akkiran et al. 2015)
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Low-rank we

Large networks compression has motivated more recent approaches:

> Exploiting orthogonality constraints (Povey et al. 2018).
> Sparse SVD (Swaminathan et al. 2020) and other SVD variants (Cai et al. 2023).

> Adapting the rank to each layer (idelbayev et al. 2020).
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Low-rank regularization implicitly, e.g. via a nuclear norm penalty (Scarvelis et al. 2024).
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Low-rank weights

Large networks compression has motivated more recent approaches:

> Exploiting orthogonality constraints (Povey et al. 2018).
> Sparse SVD (Swaminathan et al. 2020) and other SVD variants (Cai et al. 2023).
> Adapting the rank to each layer (idelbayev et al. 2020).
Low-rank regularization implicitly, e.g. via a nuclear norm penalty (Scarvelis et al. 2024).
LLM fine-tuning in particular poses computational challenges. The LoRA method (Hu et al. 2021):

> Does not approximate all weights, but only an additional

o . [ S—
term that corresponds to fine-tuning. A TR
Pretrained
. Weights r
Winetuned = Wpretrained +A with A=AB W e Rixd a
. . S ¢ A
> Reduces the amount of trainable parameters (in the =

fine-tuning stage) by a large factor (10000). Souree: (Hu et al. 2021)
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Deep NMF

Deep unfolding (or unrolling)

> Each algorithm’s iteration = one layer of a neural network. 7‘ ‘m
> Train via backpropagation through the unfolded algorithm. T l
> Lighter and more interpretable networks. E
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Deep NMF

Deep unfolding (or unrolling)

> Each algorithm’s iteration = one layer of a neural network.

> Train via backpropagation through the unfolded algorithm.

> Lighter and more interpretable networks.

Deep NMF (Le Roux et al. 2015a)

H(H—l) - H

0 (W(l))T(V . [w(l)H(l)]ﬂ—

?)

(W) T[WOHO 51

> H® is the output of the I-th layer.

> WO are the learnable weights of the I-th layer.
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Deep NMF

Deep unfolding (or unrolling)

> Each algorithm’s iteration = one layer of a neural network. i ‘.m

> Train via backpropagation through the unfolded algorithm. o l

> Lighter and more interpretable networks. E
~ B A —
Deep NMF (Le Roux et al. 2015a)
> [wp]s] > .
(WOYT(V . [WOHO)-2) o “ﬂ
HED — gO . 9 Y L=
(WO TWOHD]F-T b &

> H® is the output of the I-th layer.
> WO are the learnable weights of the I-th layer.
A very active research topic!
> Unfolding other update schemes: ISTA (Wisdom et al. 2017), ALS (Xiong et al. 2022).

> Unfold both factor updates and add other learnable parameters (Kervazo et al. 2024).

> Adapt the loss / formulate alternative optimization problems (Leplat et al. 2024).
23



Factorized latent space

Main idea: learn a transformation of the data such that the low-rank asumption better holds.
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Factorized latent space

Main idea: learn a transformation of the data such that the low-rank asumption better holds.
> Early approach, purely optimization-based (Fagot et al. 2018).

min D(|®(x)|?, WH)
@ is orthogonal W>0,H>0
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Factorized latent space

Main idea: learn a transformation of the data such that the low-rank asumption better holds.
> Early approach, purely optimization-based (Fagot et al. 2018).

min D(|®(x)|?, WH)
@ is orthogonal W>0,H>0

> More recently: a variational auto-encoder and a (fixed) latent dictionary (Sadeghi et al. 2022).
qy (ailsi) po(silzi)

S; —> Encoder —>» Q; %X

D

= Z; —> Decoder —>§Z

INEEE
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Factorized latent space

Main idea: learn a transformation of the data such that the low-rank asumption better holds.
> Early approach, purely optimization-based (Fagot et al. 2018).

min D(|®(x)|?, WH)
@ is orthogonal W>0,H>0

> More recently: a variational auto-encoder and a (fixed) latent dictionary (Sadeghi et al. 2022).
qy (ailsi) po(silzi)

S; —> Encoder —>» a; %XE = Z; —> Decoder —>§Z

D °
Perspective: learning both factors and the DNN jointly. P
i D(® WH
owiin  D(®o(x), WH) W EEEE WH
(I)_l

> A connexion with disentangled latent spaces (Luo et al. 2024).
24



NMF + deep models

Additional approaches combine (nonnegative) matrix factorization and DNNs for flexible modeling.
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NMF + deep models

Additional approaches combine (nonnegative) matrix factorization and DNNs for flexible modeling.

Deep prior: Regularizing a factorization model with a DNN.

mescesrang o

> For image denoising (Lin et al. 2020), restoration (Chen et al. 2022).

> Recommender systems (Magron et al. 2022), where deep acoustic

features regularize an item embedding:

min||[R — WH]|? + A3 ||h; — DNN(x;)|[?
%
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NMF + deep models

Additional approaches combine (nonnegative) matrix factorization and DNNs for flexible modeling.

Deep prior: Regularizing a factorization model with a DNN.
> For image denoising (Lin et al. 2020), restoration (Chen et al. 2022).

> Recommender systems (Magron et al. 2022), where deep acoustic

features regularize an item embedding:

min||[R — WH]|? + A3 ||h; — DNN(x;)|[?
%

Hybrid models optimally leverage DNNs and NMF, e.g. for speech enhancement (Leglaive et al. 2018).

X=S+N with S=DNN and N=WH
—— N——

speech noise

25



Conclusion

> NMF has been particularly successful for source separation until the mid 2010s.
> Then, it declined as deep learning has shown powerful for solving signal processing problems.

> But this comes with some drawbacks: black boxes, energy costs, reproductibility crisis, etc.
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Conclusion

> NMF has been particularly successful for source separation until the mid 2010s.
> Then, it declined as deep learning has shown powerful for solving signal processing problems.

> But this comes with some drawbacks: black boxes, energy costs, reproductibility crisis, etc.

Key message
Combining expert knowledge and data-driven models:
a promising approach for machine leaning / source separation research.

> Enable networks to exploit prior information.

Signal analysis

> Improve their robustness and reduce their size.

Optimization

> More interpretable and principled networks. i
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Useful ressources

home Cédric Févotte : : AUD OUR
cv Nonnegative Matrix PARATION
publications PN S AND .

S Selected talks Factorization N ‘Xi-‘i‘l E| =(v°i H
demos = Non-negative matrix factorizations with the beta-divergence, Tutorial at Peyresq signal & image

talks summer school, 2024. S

= Recent advances in nonnegative matrix factorization, Tutorial at ICASSP, Singapore, 2022.

Robust nonnegative matrix factorisation with the beta-divergence and applications in imaging,
Workshop Imaging & Machine Learning, Institut Henri Poincaré, Paris, 2019.

_4”2_&%‘

= Temporal models with low-rank spectrogram, Keynote at IEEE MLSP, Aalborg, 2018.
= Nonnegative matrix factorisation & friends for audio signal separation, Tutorial at SPARS
summer school, Lisbon, 2017.
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