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Abstract

This document provides additional mathematical derivations to the main paper [1], which
addresses the problem of spectrogram inversion for audio source separation. We briefly recall the
problem, the considered time-frequency constraints (consistency, mixing, and magnitude match),
and the optimization framework (losses and auxiliary functions). We then derive alternating
projection algorithms for solving the corresponding problems.

1 Preliminaries

1.1 Mathematical notations

A (capital, bold font): matrix, whose (4, j)-th entry is denoted a; ;.

e 2 (regular): scalar.

[.], £(.): magnitude and complex angle, respectively.
e . complex conjugate.
e R(.): real part function.

e =: equality up to an additive constant.

Im(.): image set of an operator.

[|.||: Frobenius norm.

®, fraction bar: element-wise matrix multiplication and division, respectively.

1.2 Problem setting

We consider the source separation problem in the STFT domain, and use the following monaural

instantaneous mixture model:
J

X=>"8; (1)

j=1
where X € CF*T is the mixture STFT, and S; € CF'*T are the J sources. F and T respectively
denote the number of frequency channels and time frames of the STFT. We assume that the sources’

STFT magnitudes V; have been estimated beforehand, thus our goal is to estimate complex-valued
sources Sj, in order to further invert these STFTs for retrieving time-domain signals.
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1.3 Constraints

To perform this task, we search for source estimates that satisfy the following properties:

e Mixing: the estimates should sum up to the mixture according to (1), so that there is no creation
or destruction of energy overall. Such estimates are said to be conservative.

e Consistency: the estimates should be consistent, that is, the corresponding complex-valued
matrices should be the STFT of time-domain signals.

e Magnitude match: the magnitudes of the estimates should remain close to the target magni-
tudes V; that have been estimated beforehand.

1.4 Auxiliary function method

We define a loss function corresponding to each objective in an optimization framework, and we
combine these either as soft penalties or hard constraints.

To solve the corresponding optimization problems, we resort to the auxiliary function method. In
a nutshell, if we consider minimization of a function ¢ with parameters 6, this approach consists in
constructing and minimizing an auziliary function ¢+ with additional auziliary parameters 6 such that
VO, ¢(0) = ming ¢T (0, 0). Then, it can easily be shown that ¢ is non-increasing under the following

update scheme: R R R
0 « argmin¢t(0,0) and 6 <+ arg mgin " (6,0). (2)
]

2 Objectives and auxiliary functions

2.1 Mixing error

As defined in the main document, the mixing error is:
h(S) = [IX = > S;li%, (3)
J
and we consider the following auxiliary function:
e 2
w(s.y) = Y0 are sl (4)
G fot g, f5t

with auxiliary parameters Y ; such that Zj Y; = X, and nonnegative weights A, such that Zj Ajpe=1
for all f,t. To obtain the update for the auxiliary parameters Y, we introduce the constraint using
the method of Lagrange multipliers which leads to finding a critical point of the following functional:

WS, Y) + 2R (D va(re — Y yin) | - (5)
It J

To that end, we set its partial derivative with respect to (w.r.t.) Y, at 0, which leads to:
1
Wit = 85.00) =770 =0 (6)
Ajot it

Summing (6) over j and using >, Aj s+ =1and >_;Y; = X allows to determine the multipliers s,

,yfﬂ: = xjvf»t - Zsj,f,t7 (7)
J
which finally leads to the update rule:
Y;=8;+A;0(X=) S (8)
k



2.2 Inconsistency

Inconsistency is defined as follows:
i(8)=_lIS; = G(S))II%, (9)
J

where G = STFT o iSTFT. As pointed out in the main paper, we have:

R . 2 — 1 R . 2
I8, G(S)IF =, _min IS, - 21" (10)

then i*(S,Z) = 3=, [|S; — Z;||? is an auxiliary function for 4, and it is minimized w.r.t. Z through the
update:

Z; = G(8;). (11)
2.3 Magnitude mismatch

Finally, the magnitude loss is:

m(S) =Y llsj.rel — vyl (12)
Jifst
We introduce a set of auxiliary parameters U, such that |U,| = V,, and rewrite the cost function
using:
18,6l = vjogel® = Nsjogel = lugpal® < lsjoge = wg gl (13)

where we use the fact that V(z, 2') € C2, ||z| — |2’|| < |z — 2’| and where the equality holds if /2 = /2’
(this is easy to demonstrate using the triangle inequality). This leads to:

m(S) <Y Isjre — u il (14)
it

In other words, m(S) < m™*(S,U;) with:

m*(8,Y)=> _[IS; - U7, (15)

J

To minimize m™* w.r.t. U under the constraint |U;| = V;, we again resort to the method of Lagrange
multipliers. We therefore aim at finding a critical point for:

mt(8,0) + D b pellujpel® =03 1), (16)
j7f7t

where 6; ;; are Lagrange multipliers. We set the partial derivative of (16) w.r.t U; at 0 which yields:
Yift = Si.p0 05 ety pe = 0, (17)

which rewrites:
(L4 05,0 )w) 10 = 8j,1- (18)

Using the constraint |u; ;.| = v, r+, we have:

1146 44] = Lﬂ}f’t . (19)
Vg, f.t
which finally leads to the update for Uj;:
S;

We retain the update that do not modify the phase of S;, since it ensures that m(S) = m*(S,U;),
which shows that m™ is an auxiliary function for m.



3 Algorithms derivation

3.1 Mix+Incons

First, let us ignore the magnitude constraint, and consider the following objective function:
msinh(S) + oi(S), (21)

where o > 0 is a weight adjusting the relative importance of the consistency constraint. Using the
previously derived auxiliary function for each term, the problem rewrites:

Bt -+ - ,
Juin, (S,Y)+0ait(S,Z) s. t. ZY]_X and Z; € Im(STFT). (22)
J

The updates for Y and Z have already been obtained (¢f. (8) and (11)), so we only need to obtain the

update for S. To do so, we set the partial derivative of the objective function in (22) w.r.t. S; at 0:
S, -Y;
]TjJ"FO'(Sj—Zj):O, (23)

and solving yields:
(24)

3.2 Mix+Incons_hardMag

Now, we incorporate a hard magnitude constraint (Vj, |S;| = V;) in (22) by means of the method of
Lagrange multipliers. We therefore aim at finding a critical point for:

H(S,Y,Z,8) =h"(S,Y) + it (S,2) + Y & p.e(lsspal® — 0] 1.4, (25)
J.fit

where we discarded the constraints that only refer to Y and Z, since their updates are already known.
We set the partial derivative of H w.r.t S; at 0:

1

Nrt (sj.1.6 = Yjpt) +0(85.00 = Zipt) + 05 1.085.00 = 0, (26)
3, fs
which rewrites:
(L4 (6.6 +0)Nj )85 .0 = Yipt + ONj 147 10 (27)
Using the constraint |s; 7| = v; ¢, we have:
. s 4
1+ (5j,f,t + U)/\j,f,t _ ij,f,t +o J7f,th7f,t|’ (28)
V. f.t
which finally leads to the update for S;:
Y, +0A; ©Z;
S; =2 J LoV, 29
J |Yj+O'Aj®Zj‘® J ( )

3.3 Incons_hardMix

Now, let us consider that the mixing constraint is no longer a term in the objective function, which
therefore reduces to the inconsistency cost only. In this setting, one can use an hard magnitude
constraint, which becomes equivalent to the update (29) obtained above with o = +o00. Alternatively,
one can consider a hard mixing constraint, which we do hereafter (as pointed out in the main paper, it
is not possible to use both since they might be incompatible in practice). The problem becomes that
of minimizing inconsistency (9) under the constraint 3 ;S; =X. We seek to find a critical point for:

7;+(S, Z) + 2% Z’Yf,t(xf,t — Z 8j7f7t) . (30)

It J



As the update for Z is already known (cf. (11)), we set the partial derivative of (30) w.r.t. S; at 0:
Sjfit = Zft = Ve =0 (31)
Summing over j and using the hard mixing constraint, we have:
1
TVt = j(xf,t - sz,f,t)v (32)
J
which yields the update for S;:
1
S, =Z;+=X-) Zj). 33
J J + J( Zk: k) ( )

which is actually non-iterative: indeed, since the Z; are by construction consistent matrices, and since
the set of consistent matrices is a vector space, then S; is also consistent. Therefore, given any initial

S;, the following estimate:

8, =0(8) + T(X ~ Y 6(50)) (34)
k

is a solution to the problem, that is, it is a zero of the inconsistency function ¢ and it complies with
the mixing constraint.

3.4 Mag+Incons hardMix

We consider the magnitude mismatch as the main objective function, with a soft consistency penalty
and under a hard mixing constraint.

minm(S) + oi(S) s t. Zsj =X. (35)

3.4.1 Auxiliary function method

Using the same methodology as above results in finding a critical point for:

m*(S,U) + it (S,Z) + 2R va,t(a:f,t - Z sire) |- (36)

fit J

where 77, are the Lagrange multipliers (again, we discard the constraints on Z and U since they are
already known). Setting its partial derivative w.r.t. S; at 0 yields:

it = Wi gt + (800 = 25,56) = Vpe =0, (37)
which rewrites:
(L+0)sj e — (e + 02 50) =75 = 0. (38)

Summing over j and using the hard mixing constraint, we have:

(1+o0)xs: — Z(u‘j}f’t +ozj54) =I5 =0, (39)

J

which yields:

(L4 o)zpe— Y (ujpe+o0zip) | - (40)
3

<=

Vit =
Incorporating this expression into (38) leads to:

1
(L +0)sjpe = (ujpe + 02 p0) + (1 +0)aps — > (ki ge+ 02k 1.0)- (41)
k



We introduce the following notation:

1

W, = ——
J l1+o

(Uj +O’Zj), (42)

which allows to write the update (41) in compact form:

1
Sj:wj—i_J(X_zk:Wk). (43)

Remark: Let us note that if we discard the consistency constraint (¢ = 0) and initialize the estimates
using an amplitude mask, i.e., S; = V; ® %, then the estimator becomes:

1 X
&<W+AX|§)m%m, (4)

which is non-iterative and assigns the mixture’s phase to each source, therefore it is not interesting for
a phase recovery purpose.

3.4.2 Direct derivation when there is no inconsistency

Considering no consistency penalty, we can solve problem (35) directly without resorting to the aux-
iliary function method, that is, we aim at finding a critical point of:

M(S,7,7) =m(S) + 2R | Y vpelare — > sire) | - (45)
fit J

To that end, we remark that:
m(S) £ 85 145500 — 205, 1.08/55 14551105 (46)
Jifst

Setting the partial derivative of M w.r.t. S; at 0 leads to (we remove the indexes f and ¢ for clarity):

5.
S5 — Uj\/\/; +v= 0. (47)
J

Since for all z € C*, % = 137, then. (47) rewrites:

S.;
Sj*’()jﬁ +’Y:0 (48)
J

Let us now write s; in polar form: s; = ajei¢’j. We have:
(aj —vj)e!® +~ =0. (49)

which implies that a; — v; and ¢; are constant for all j. Consequently, since ) j ajei¢j = x, then
¢; = Zx. Besides, since a; = v; + ¢, then Y}, v, + Je = |z], so ¢ = L (|z| — 3, vk). This results in

8j = (Uj + %(|!17| - ZM) e (50)

l

or equivalently:
1 z
55 = <vj + (e - Zm) T (51)
l

We observe that these estimates are equivalent to those given by (44).
Remark: if we use the Kullback-Leibler divergence instead of the Euclidean distance for defining m,
we obtain similar non-iterative estimates given by the amplitude ratio:

Yy

xZ.
>k Uk

Sj:

(52)



Table 1: Alternating projection algorithms for spectrogram inversion.

Algorithm Consistency Mixing Iterative Update formula

MISI no 1/J yes Puix (Pmag (Peons(S)))
Mix+Incons o {A,}; yes 1 +10A © (Pumix(S) + 0 A © Peons(S))
Mix+Incons_hardMag 1% {A;}; yes Puag(Pmix(S) + 0 A © Peons(S))
Incons_hardMix no 1/J no Prixc(Peons(S))
Mag+Incons hardMix o 1/J yes Prix <:l_]|;(j_(Pmag(S) + Jpcons(s))>

4 Summary of the algorithms

We summarize in Table 1 the updates performed by these various MM algorithms using the following
magnitude, consistency, and mixing projectors:

Pons() = { 5 © Vi | (53)

Pcons(s) = {g(sj)}J (54)

Prix(S) = {Sj +A; @(XZSk)} . (55)
k J
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