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Research themes

▷ Speech enhancement for auditory neuropathy (with N. Monir, R. Serizel).

▷ Audio inpainting / restoration (with L. Bahrman, M. Krémé, A. Deleforge).

▷ Combining dictionary models and deep learning (with L. Lalay, M. Sadeghi).

▷ Joint synthesis / source separation.

Transform Synthesis

▷ Source separation (with so many people).

2



Research themes

▷ Speech enhancement for auditory neuropathy (with N. Monir, R. Serizel).

▷ Audio inpainting / restoration (with L. Bahrman, M. Krémé, A. Deleforge).
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Audio source separation



Audio source separation

▷ Audio signals are composed of several constitutive sounds: multiple speakers, background noise,

domestic sounds, musical instruments...

Source separation = recovering the sources from the mixture.

▷ Augmented mixing (from mono to stereo).

▷ An important preprocessing for many analysis tasks

(speech recognition, melody extraction...).

Framework

▷ Monaural signals.

▷ Short-time Fourier transform (STFT)-domain separation.

▷ Mixture model: X =
∑J

j=1 Sj .

STFT

Audio signal

Spectrogram Phase

x ∈ RN STFT−−−→ X ∈ CF×T
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Typical separation pipeline

Nonnegative time-frequency (TF) masking:

Transform Synthesis
Separation model

▷ A nonnegative representation is processed (e.g., magnitude or power spectrogram).

▷ The separator is a deep neural network, trained using a (large) dataset with isolated sources.

▷ The mixture’s phase is assigned to each source using a Wiener-like filter or masking process.
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The phase problem

✗ Nonnegative masking: Issues in sound quality when sources overlap in the TF domain.

|X| ≠ |S1|+ |S2|
∠X ̸= ∠S1 or ∠S2

Time

Fr
eq

ue
nc

y

Mixture of 2 speakers

Time

Overlap map

The potential of phase recovery

Given the current state-of-the-art, more potential gain

in phase recovery than in magnitude estimation.
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Phase recovery for source separation

Transform Synthesis

Separation model
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▷ So far using “old-school” signal processing.

▷ Perspective: leveraging deep learning for phase recovery.
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Phase models



Sinusoidal phase model

Consider a mixture of sinusoids: x(n) =
∑P

p=1Ap sin(2π νp︸︷︷︸
normalized frequency

n+ ϕ0,p).

The STFT phase follows: µf,t = µf,t−1 + lνf,t

Sinusoids Linear phase
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✓ Useful for source separation (and audio inpainting) applications.

✗ The performance is limited due to the simplicity of the model.
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Perspective: towards deep phase models

Recently: Some attempts at predicting the phase using DNNs.

✗ Generic architectures which do not account for the particular phase structure.

✗ Cumbersome two-stage approaches to resolve some ambiguities.

Proposal: Generalize phase models from signal analysis using deep learning.

µt = µt−1 + lνt → µt = R(νt,µt−1, . . . ,µt−τ )︸ ︷︷ ︸
temporal dynamics

with νt = C(|x|t)︸ ︷︷ ︸
frequency extraction

▷ Architectural choices (non-linearities, loss functions)

adapted to the phase (periodicity).

▷ Identify and exploit perceptual phase invariants. =
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Probabilistic phase modeling



Phase-aware Gaussian models

The ubiquitous isotropic Gaussian model:

s ∼ NC(m,Γ) with Γ =

(
γ 0

0 γ

)

Equivalent to assuming a uniform phase ∠s ∼ U[0,2π[.

✗ Impossible to promote any phase structure / prior.

Isotropic

Anisotropic Gaussian model

s ∼ NC(m,Γ) with Γ =

(
γ c

c̄ γ

)

c is the relation term, defined as a function of the phase parameter µ.

✓ Allows to incorporate phase priors; nice performance boost for source

separation applications (e.g., phase-aware Wiener filter).

Anisotropic
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Perspective: anisotropic deep learning

✗ Bayesian deep learning / variational autoencoders (VAE) are limited to isotropic distributions.

Proposal: Combine deep learning and anisotropic modeling, e.g., via anisotropic VAEs.

z|x ∼ NC(ψenc(x),Γenc)︸ ︷︷ ︸
encoder

and s|z ∼ NC(ψdec(z),Γdec)︸ ︷︷ ︸
decoder

▷ A strong effort in modeling and optimization is needed for deriving appropriate estimation

techniques.
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Spectrogram inversion algorithms



Spectrogram inversion

Goal: retrieve (complex-valued) STFTs from (non-negative) spectrograms.

▷ Identify important properties in the STFT domain.

▷ Promote them by defining an optimization problem.

▷ Solve it using some optimization strategy.

▷ Many algorithms in the literature!

▷ Which problem formulation is the most appropriate in

practice?

▷ Proposal: let’s define a general spectrogram inversion

framework.

Mixing

Magnitude
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STFT-domain constraints

+

Mixing

iSTFT

STFT

Consistency Magnitude

▷ Mixing: the estimates should be conservative = sum up to the mixture, such that there is no

creation/destruction of energy.

▷ Consistency: the estimates (=complex-valued matrices) should be the STFT of time-domain

signals.

▷ Magnitude match: the estimates’ magnitude should remain close to the output of the DNN

computed beforehand.
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Overview

Proposal: A general framework for deriving spectrogram inversion algorithms

▷ For each property/objective/constraint, define a loss function (and an auxiliary function).

▷ Combine them (soft penalties / hard constraints) to formulate optimization problems.

▷ Derive algorithms that alternate projections on the corresponding constraints subspaces.

Auxiliary function method

▷ Considering minimization of ϕ, construct ϕ+ such that:

ϕ(θ) = minθ̃ ϕ
+(θ, θ̃).

▷ ϕ is non-increasing when minimizing ϕ+ with respect to θ and θ̃

alternately.

✓ Convergence, successfully used in audio, no hyperparameter to tune.
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Mixing constraint

Loss function that promotes conservative estimates:

h(S) = ||X−
∑
j

Sj ||2

Auxiliary function

▷ Auxiliary parameters Y such that
∑

j Yj = X.

▷ Positive weights Λj such that
∑

j λj,f,t = 1.

▷ Then the following is an auxiliary function for h:

h+(S,Y) =
∑
j,f,t

|yj,f,t − sj,f,t|2

λj,f,t

Auxiliary parameters update: Yj = Sj +Λj ⊙ (X−
∑

k Sk)

▷ Defines a projector Pmix onto the subspace of matrices complying

with the mixing constraint.

+

Mixing

14



Mixing constraint

Loss function that promotes conservative estimates:

h(S) = ||X−
∑
j

Sj ||2

Auxiliary function

▷ Auxiliary parameters Y such that
∑

j Yj = X.

▷ Positive weights Λj such that
∑

j λj,f,t = 1.

▷ Then the following is an auxiliary function for h:

h+(S,Y) =
∑
j,f,t

|yj,f,t − sj,f,t|2

λj,f,t

Auxiliary parameters update: Yj = Sj +Λj ⊙ (X−
∑

k Sk)

▷ Defines a projector Pmix onto the subspace of matrices complying

with the mixing constraint.

+

Mixing

14



Mixing constraint

Loss function that promotes conservative estimates:

h(S) = ||X−
∑
j

Sj ||2

Auxiliary function

▷ Auxiliary parameters Y such that
∑

j Yj = X.

▷ Positive weights Λj such that
∑

j λj,f,t = 1.

▷ Then the following is an auxiliary function for h:

h+(S,Y) =
∑
j,f,t

|yj,f,t − sj,f,t|2

λj,f,t

Auxiliary parameters update: Yj = Sj +Λj ⊙ (X−
∑

k Sk)

▷ Defines a projector Pmix onto the subspace of matrices complying

with the mixing constraint.

+

Mixing

14



Mixing constraint

Loss function that promotes conservative estimates:

h(S) = ||X−
∑
j

Sj ||2

Auxiliary function

▷ Auxiliary parameters Y such that
∑

j Yj = X.

▷ Positive weights Λj such that
∑

j λj,f,t = 1.

▷ Then the following is an auxiliary function for h:

h+(S,Y) =
∑
j,f,t

|yj,f,t − sj,f,t|2

λj,f,t

Auxiliary parameters update: Yj = Sj +Λj ⊙ (X−
∑

k Sk)

▷ Defines a projector Pmix onto the subspace of matrices complying

with the mixing constraint.

+

Mixing

x

x

14



Consistency constraint

Loss function that promotes consistent estimates:

i(S) =
∑
j

||Sj − G(Sj)||2 with G = STFT ◦ iSTFT

Auxiliary function

▷ G(Sj) is the closest consistent matrix to Sj .

▷ Then i+(S,Z) =
∑

j ||Sj − Zj ||2 (where Zj ∈ Im(STFT)) is an

auxiliary function for i.

Auxiliary parameters update: Zj = G(Sj)

▷ Defines a projector Pcons onto the subspace of consistent matrices.

iSTFT

STFT

Consistency

15
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Magnitude constraint

Loss function that ensures the estimates’ magnitudes remain close to

the target value Vj estimated beforehand (e.g., using a DNN):

m(S) =
∑
j

|||Sj | −Vj ||2

Auxiliary function

▷ Auxiliary parameters U such that |Uj | = Vj .

▷ m+(S,Z) =
∑

j ||Sj −Uj ||2 is an auxiliary function for m.

Auxiliary parameters update: Uj =
Sj

|Sj |
⊙Vj

▷ Defines a projector Pmag onto the subspace of matrices whose

magnitude equals the target value.

Magnitude

16
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Algorithm derivation example: problem setting

Main problem: optimize the mixing objective + soft consistency penalty + hard magnitude constraint.

min
S
h(S) + σi(S) such that |Sj | = Vj

Using our auxiliary function framework, this rewrites:

such that


|Sj | = Vj

▷ Auxiliary parameters updates are already known.

▷ So let’s focus on the update on S.

17
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Algorithm derivation example: update

New problem

▷ Incorporate the hard constraint using the method of Lagrange multipliers.

▷ Find a critical point for:

h+(S,Y) + σi+(S,Z) +
∑
j,f,t

δj,f,t(|sj,f,t|2 − v2j,f,t)

Update

▷ Set the partial derivative with respect to S at 0 and solve:

Sj =
Yj + σΛj ⊙ Zj

|Yj + σΛj ⊙ Zj |
⊙Vj

▷ Generalizes particular cases from the literature (σ = 0 and σ = +∞).
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Algorithm derivation example: illustration

Compact update rule using the projectors: Pmag (Pmix(S) + σΛ⊙ Pcons(S))

Check our EUSIPCO paper for all problem formulations / update schemes.
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Experiments

Task: speech enhancement

▷ Clean speech (VoiceBank) + noise (DEMAND: living room, bus, and public square noises).

▷ Magnitudes are estimated beforehand using Open-Unmix.

Separation quality (signal-to-distortion ratio):

Accurate magnitudes Less accurate magnitudes

Baseline (MISI) 19.6 7.7

Proposed (1) 19.6 7.7

Proposed (2) 19.6 7.5

Proposed (3) 19.3 8.1

▷ Some novel algorithms are interesting alternatives.

▷ Perspectives: unfold these into neural networks for time-domain training.
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Conclusion



Current trends

From nonnegative to time-domain deep learning.

✓ Performance in controlled conditions, no more phase problem.

✗ Greediness in (annotated) training data.

✗ Lacks interpretability and flexibility.

... and then back to STFT-domain deep learning.

✓ Robustness/flexibility of time-frequency processing.

✓ Performance of processing all the data exhaustively.

✗ Using a real/imaginary part decomposition of the STFT is sub-optimal.
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The proposed alternative

▷ The room for improvement of phase recovery: more potential gain than with magnitudes.

▷ Move towards deep phase recovery for increased performance.

Transform Synthesis
Spectrogram model

Phase model

Spectrogram inversion
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Work in progress:

▷ Design deep phase prior models.

▷ Unfold iterative algorithms into neural networks for time-domain separation.
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Thanks!

https://magronp.github.io/

https://github.com/magronp/
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