
Towards deep phase recovery for audio source separation

Seminar at Audio Research Group, Tampere University, Finland

August 30, 2023

Paul Magron

Université de Lorraine, CNRS, Inria, LORIA, Nancy, France

A brief history of me

Postdoc (2017-2019)

PhD (2013-2016)

Internship (2013)

M2 (2012-2013)

Researcher (2021-)

Postdoc (2019-2021)

1

A brief history of me

Postdoc (2017-2019)

PhD (2013-2016)

Internship (2013)

M2 (2012-2013)

Researcher (2021-)

Postdoc (2019-2021)

1

Research themes

▷ Speech enhancement for auditory neuropathy (with N. Monir, R. Serizel).

▷ Audio inpainting / restoration (with L. Bahrman, M. Krémé, A. Deleforge).

▷ Combining dictionary models and deep learning (with L. Lalay, M. Sadeghi).

▷ Joint synthesis / source separation.

Transform Synthesis

▷ Source separation (with so many people).

2

Research themes

▷ Speech enhancement for auditory neuropathy (with N. Monir, R. Serizel).

▷ Audio inpainting / restoration (with L. Bahrman, M. Krémé, A. Deleforge).

▷ Combining dictionary models and deep learning (with L. Lalay, M. Sadeghi).

▷ Joint synthesis / source separation.

Transform Synthesis

▷ Source separation (with so many people).

2

Research themes

▷ Speech enhancement for auditory neuropathy (with N. Monir, R. Serizel).

▷ Audio inpainting / restoration (with L. Bahrman, M. Krémé, A. Deleforge).

▷ Combining dictionary models and deep learning (with L. Lalay, M. Sadeghi).

▷ Joint synthesis / source separation.

Transform Synthesis

▷ Source separation (with so many people).

2

Audio source separation

Audio source separation

▷ Audio signals are composed of several constitutive sounds: multiple speakers, background noise,

domestic sounds, musical instruments...

Source separation = recovering the sources from the mixture.

▷ Augmented mixing (from mono to stereo).

▷ An important preprocessing for many analysis tasks

(speech recognition, melody extraction...).

Framework

▷ Monaural signals.

▷ Short-time Fourier transform (STFT)-domain separation.

▷ Mixture model: X =
∑J

j=1 Sj .

STFT

Audio signal

Spectrogram Phase

x ∈ RN STFT−−−→ X ∈ CF×T

3

Audio source separation

▷ Audio signals are composed of several constitutive sounds: multiple speakers, background noise,

domestic sounds, musical instruments...

Source separation = recovering the sources from the mixture.

▷ Augmented mixing (from mono to stereo).

▷ An important preprocessing for many analysis tasks

(speech recognition, melody extraction...).

Framework

▷ Monaural signals.

▷ Short-time Fourier transform (STFT)-domain separation.

▷ Mixture model: X =
∑J

j=1 Sj .

STFT

Audio signal

Spectrogram Phase

x ∈ RN STFT−−−→ X ∈ CF×T

3

Audio source separation

▷ Audio signals are composed of several constitutive sounds: multiple speakers, background noise,

domestic sounds, musical instruments...

Source separation = recovering the sources from the mixture.

▷ Augmented mixing (from mono to stereo).

▷ An important preprocessing for many analysis tasks

(speech recognition, melody extraction...).

Framework

▷ Monaural signals.

▷ Short-time Fourier transform (STFT)-domain separation.

▷ Mixture model: X =
∑J

j=1 Sj .

STFT

Audio signal

Spectrogram Phase

x ∈ RN STFT−−−→ X ∈ CF×T

3

Typical separation pipeline

Nonnegative time-frequency (TF) masking:

Transform Synthesis
Separation model

▷ A nonnegative representation is processed (e.g., magnitude or power spectrogram).

▷ The separator is a deep neural network, trained using a (large) dataset with isolated sources.

▷ The mixture’s phase is assigned to each source using a Wiener-like filter or masking process.

4

Typical separation pipeline

Nonnegative time-frequency (TF) masking:

Transform Synthesis
Separation model

▷ A nonnegative representation is processed (e.g., magnitude or power spectrogram).

▷ The separator is a deep neural network, trained using a (large) dataset with isolated sources.

▷ The mixture’s phase is assigned to each source using a Wiener-like filter or masking process.

4

Typical separation pipeline

Nonnegative time-frequency (TF) masking:

Transform Synthesis
Separation model

▷ A nonnegative representation is processed (e.g., magnitude or power spectrogram).

▷ The separator is a deep neural network, trained using a (large) dataset with isolated sources.

▷ The mixture’s phase is assigned to each source using a Wiener-like filter or masking process.

4

Typical separation pipeline

Nonnegative time-frequency (TF) masking:

Transform Synthesis
Separation model

▷ A nonnegative representation is processed (e.g., magnitude or power spectrogram).

▷ The separator is a deep neural network, trained using a (large) dataset with isolated sources.

▷ The mixture’s phase is assigned to each source using a Wiener-like filter or masking process.

4

The phase problem

✗ Nonnegative masking: Issues in sound quality when sources overlap in the TF domain.

|X| ≠ |S1|+ |S2|
∠X ̸= ∠S1 or ∠S2

Time

Fr
eq

ue
nc

y

Mixture of 2 speakers

Time

Overlap map

The potential of phase recovery

Given the current state-of-the-art, more potential gain

in phase recovery than in magnitude estimation.

5

The phase problem

✗ Nonnegative masking: Issues in sound quality when sources overlap in the TF domain.

|X| ≠ |S1|+ |S2|
∠X ̸= ∠S1 or ∠S2

Time

Fr
eq

ue
nc

y

Mixture of 2 speakers

Time

Overlap map

The potential of phase recovery

Given the current state-of-the-art, more potential gain

in phase recovery than in magnitude estimation.

5

Phase recovery for source separation

Transform Synthesis

Separation model

0 2
0

1

2

3

4

p
(

|
,

)

=0

=2

=5

=100

Phase recovery

Main contributions

Phase models
Sinusoids Linear phase

Statistical framework Iterative algorithms

0 v1 v2

x
(i t)
1

x
(i t)
2

x
(i t)
1 +x

(i t)
2

x

E (i t)

y
(i t+1)
1

y
(i t+1)
2

x
(i t+1)
1

x
(i t+1)
2

▷ So far using “old-school” signal processing.

▷ Perspective: leveraging deep learning for phase recovery.

6

Phase recovery for source separation

Transform Synthesis

Separation model

0 2
0

1

2

3

4

p
(

|
,

)

=0

=2

=5

=100

Phase recovery

Main contributions

Phase models
Sinusoids Linear phase

Statistical framework Iterative algorithms

0 v1 v2

x
(i t)
1

x
(i t)
2

x
(i t)
1 +x

(i t)
2

x

E (i t)

y
(i t+1)
1

y
(i t+1)
2

x
(i t+1)
1

x
(i t+1)
2

▷ So far using “old-school” signal processing.

▷ Perspective: leveraging deep learning for phase recovery.

6

Phase recovery for source separation

Transform Synthesis

Separation model

0 2
0

1

2

3

4

p
(

|
,

)

=0

=2

=5

=100

Phase recovery

Main contributions

Phase models
Sinusoids Linear phase

Statistical framework Iterative algorithms

0 v1 v2

x
(i t)
1

x
(i t)
2

x
(i t)
1 +x

(i t)
2

x

E (i t)

y
(i t+1)
1

y
(i t+1)
2

x
(i t+1)
1

x
(i t+1)
2

▷ So far using “old-school” signal processing.

▷ Perspective: leveraging deep learning for phase recovery.
6

Phase models

Sinusoidal phase model

Consider a mixture of sinusoids: x(n) =
∑P

p=1Ap sin(2π νp︸︷︷︸
normalized frequency

n+ ϕ0,p).

The STFT phase follows: µf,t = µf,t−1 + lνf,t

Sinusoids Linear phase

p

Frequency Frequency

F
re
q
u
e
n
c
y

Time

L
o
g
-m

a
g
n
it
u
d
e

L
o
g
-m

a
g
n
it
u
d
e

✓ Useful for source separation (and audio inpainting) applications.

✗ The performance is limited due to the simplicity of the model.

7

Sinusoidal phase model

Consider a mixture of sinusoids: x(n) =
∑P

p=1Ap sin(2π νp︸︷︷︸
normalized frequency

n+ ϕ0,p).

The STFT phase follows: µf,t = µf,t−1 + lνf,t

Sinusoids Linear phase

p

Frequency Frequency

F
re
q
u
e
n
c
y

Time

L
o
g
-m

a
g
n
it
u
d
e

L
o
g
-m

a
g
n
it
u
d
e

✓ Useful for source separation (and audio inpainting) applications.

✗ The performance is limited due to the simplicity of the model.

7

Sinusoidal phase model

Consider a mixture of sinusoids: x(n) =
∑P

p=1Ap sin(2π νp︸︷︷︸
normalized frequency

n+ ϕ0,p).

The STFT phase follows: µf,t = µf,t−1 + lνf,t

Sinusoids Linear phase

p

Frequency Frequency

F
re
q
u
e
n
c
y

Time

L
o
g
-m

a
g
n
it
u
d
e

L
o
g
-m

a
g
n
it
u
d
e

✓ Useful for source separation (and audio inpainting) applications.

✗ The performance is limited due to the simplicity of the model.

7

Sinusoidal phase model

Consider a mixture of sinusoids: x(n) =
∑P

p=1Ap sin(2π νp︸︷︷︸
normalized frequency

n+ ϕ0,p).

The STFT phase follows: µf,t = µf,t−1 + lνf,t

Sinusoids Linear phase

p

Frequency Frequency

F
re
q
u
e
n
c
y

Time

L
o
g
-m

a
g
n
it
u
d
e

L
o
g
-m

a
g
n
it
u
d
e

✓ Useful for source separation (and audio inpainting) applications.

✗ The performance is limited due to the simplicity of the model.

7

Perspective: towards deep phase models

Recently: Some attempts at predicting the phase using DNNs.

✗ Generic architectures which do not account for the particular phase structure.

✗ Cumbersome two-stage approaches to resolve some ambiguities.

Proposal: Generalize phase models from signal analysis using deep learning.

µt = µt−1 + lνt → µt = R(νt,µt−1, . . . ,µt−τ)︸ ︷︷ ︸
temporal dynamics

with νt = C(|x|t)︸ ︷︷ ︸
frequency extraction

▷ Architectural choices (non-linearities, loss functions)

adapted to the phase (periodicity).

▷ Identify and exploit perceptual phase invariants. =

8

Perspective: towards deep phase models

Recently: Some attempts at predicting the phase using DNNs.

✗ Generic architectures which do not account for the particular phase structure.

✗ Cumbersome two-stage approaches to resolve some ambiguities.

Proposal: Generalize phase models from signal analysis using deep learning.

µt = µt−1 + lνt → µt = R(νt,µt−1, . . . ,µt−τ)︸ ︷︷ ︸
temporal dynamics

with νt = C(|x|t)︸ ︷︷ ︸
frequency extraction

▷ Architectural choices (non-linearities, loss functions)

adapted to the phase (periodicity).

▷ Identify and exploit perceptual phase invariants. =

8

Perspective: towards deep phase models

Recently: Some attempts at predicting the phase using DNNs.

✗ Generic architectures which do not account for the particular phase structure.

✗ Cumbersome two-stage approaches to resolve some ambiguities.

Proposal: Generalize phase models from signal analysis using deep learning.

µt = µt−1 + lνt → µt = R(νt,µt−1, . . . ,µt−τ)︸ ︷︷ ︸
temporal dynamics

with νt = C(|x|t)︸ ︷︷ ︸
frequency extraction

▷ Architectural choices (non-linearities, loss functions)

adapted to the phase (periodicity).

▷ Identify and exploit perceptual phase invariants. =

8

Probabilistic phase modeling

Phase-aware Gaussian models

The ubiquitous isotropic Gaussian model:

s ∼ NC(m,Γ) with Γ =

(
γ 0

0 γ

)

Equivalent to assuming a uniform phase ∠s ∼ U[0,2π[.

✗ Impossible to promote any phase structure / prior.

Isotropic

Anisotropic Gaussian model

s ∼ NC(m,Γ) with Γ =

(
γ c

c̄ γ

)

c is the relation term, defined as a function of the phase parameter µ.

✓ Allows to incorporate phase priors; nice performance boost for source

separation applications (e.g., phase-aware Wiener filter).

Anisotropic

9

Phase-aware Gaussian models

The ubiquitous isotropic Gaussian model:

s ∼ NC(m,Γ) with Γ =

(
γ 0

0 γ

)

Equivalent to assuming a uniform phase ∠s ∼ U[0,2π[.

✗ Impossible to promote any phase structure / prior.

Isotropic

Anisotropic Gaussian model

s ∼ NC(m,Γ) with Γ =

(
γ c

c̄ γ

)

c is the relation term, defined as a function of the phase parameter µ.

✓ Allows to incorporate phase priors; nice performance boost for source

separation applications (e.g., phase-aware Wiener filter).

Anisotropic

9

Perspective: anisotropic deep learning

✗ Bayesian deep learning / variational autoencoders (VAE) are limited to isotropic distributions.

Proposal: Combine deep learning and anisotropic modeling, e.g., via anisotropic VAEs.

z|x ∼ NC(ψenc(x),Γenc)︸ ︷︷ ︸
encoder

and s|z ∼ NC(ψdec(z),Γdec)︸ ︷︷ ︸
decoder

▷ A strong effort in modeling and optimization is needed for deriving appropriate estimation

techniques.

10

Perspective: anisotropic deep learning

✗ Bayesian deep learning / variational autoencoders (VAE) are limited to isotropic distributions.

Proposal: Combine deep learning and anisotropic modeling, e.g., via anisotropic VAEs.

z|x ∼ NC(ψenc(x),Γenc)︸ ︷︷ ︸
encoder

and s|z ∼ NC(ψdec(z),Γdec)︸ ︷︷ ︸
decoder

▷ A strong effort in modeling and optimization is needed for deriving appropriate estimation

techniques.

10

Perspective: anisotropic deep learning

✗ Bayesian deep learning / variational autoencoders (VAE) are limited to isotropic distributions.

Proposal: Combine deep learning and anisotropic modeling, e.g., via anisotropic VAEs.

z|x ∼ NC(ψenc(x),Γenc)︸ ︷︷ ︸
encoder

and s|z ∼ NC(ψdec(z),Γdec)︸ ︷︷ ︸
decoder

▷ A strong effort in modeling and optimization is needed for deriving appropriate estimation

techniques.

10

Spectrogram inversion algorithms

Spectrogram inversion

Goal: retrieve (complex-valued) STFTs from (non-negative) spectrograms.

▷ Identify important properties in the STFT domain.

▷ Promote them by defining an optimization problem.

▷ Solve it using some optimization strategy.

▷ Many algorithms in the literature!

▷ Which problem formulation is the most appropriate in

practice?

▷ Proposal: let’s define a general spectrogram inversion

framework.

Mixing

Magnitude

11

Spectrogram inversion

Goal: retrieve (complex-valued) STFTs from (non-negative) spectrograms.

▷ Identify important properties in the STFT domain.

▷ Promote them by defining an optimization problem.

▷ Solve it using some optimization strategy.

▷ Many algorithms in the literature!

▷ Which problem formulation is the most appropriate in

practice?

▷ Proposal: let’s define a general spectrogram inversion

framework.

Mixing

Magnitude

11

STFT-domain constraints

+

Mixing

iSTFT

STFT

Consistency Magnitude

▷ Mixing: the estimates should be conservative = sum up to the mixture, such that there is no

creation/destruction of energy.

▷ Consistency: the estimates (=complex-valued matrices) should be the STFT of time-domain

signals.

▷ Magnitude match: the estimates’ magnitude should remain close to the output of the DNN

computed beforehand.

12

STFT-domain constraints

+

Mixing

iSTFT

STFT

Consistency

Magnitude

▷ Mixing: the estimates should be conservative = sum up to the mixture, such that there is no

creation/destruction of energy.

▷ Consistency: the estimates (=complex-valued matrices) should be the STFT of time-domain

signals.

▷ Magnitude match: the estimates’ magnitude should remain close to the output of the DNN

computed beforehand.

12

STFT-domain constraints

+

Mixing

iSTFT

STFT

Consistency Magnitude

▷ Mixing: the estimates should be conservative = sum up to the mixture, such that there is no

creation/destruction of energy.

▷ Consistency: the estimates (=complex-valued matrices) should be the STFT of time-domain

signals.

▷ Magnitude match: the estimates’ magnitude should remain close to the output of the DNN

computed beforehand.

12

Overview

Proposal: A general framework for deriving spectrogram inversion algorithms

▷ For each property/objective/constraint, define a loss function (and an auxiliary function).

▷ Combine them (soft penalties / hard constraints) to formulate optimization problems.

▷ Derive algorithms that alternate projections on the corresponding constraints subspaces.

Auxiliary function method

▷ Considering minimization of ϕ, construct ϕ+ such that:

ϕ(θ) = minθ̃ ϕ
+(θ, θ̃).

▷ ϕ is non-increasing when minimizing ϕ+ with respect to θ and θ̃

alternately.

✓ Convergence, successfully used in audio, no hyperparameter to tune.

13

Overview

Proposal: A general framework for deriving spectrogram inversion algorithms

▷ For each property/objective/constraint, define a loss function (and an auxiliary function).

▷ Combine them (soft penalties / hard constraints) to formulate optimization problems.

▷ Derive algorithms that alternate projections on the corresponding constraints subspaces.

Auxiliary function method

▷ Considering minimization of ϕ, construct ϕ+ such that:

ϕ(θ) = minθ̃ ϕ
+(θ, θ̃).

▷ ϕ is non-increasing when minimizing ϕ+ with respect to θ and θ̃

alternately.

✓ Convergence, successfully used in audio, no hyperparameter to tune.

13

Mixing constraint

Loss function that promotes conservative estimates:

h(S) = ||X−
∑
j

Sj ||2

Auxiliary function

▷ Auxiliary parameters Y such that
∑

j Yj = X.

▷ Positive weights Λj such that
∑

j λj,f,t = 1.

▷ Then the following is an auxiliary function for h:

h+(S,Y) =
∑
j,f,t

|yj,f,t − sj,f,t|2

λj,f,t

Auxiliary parameters update: Yj = Sj +Λj ⊙ (X−
∑

k Sk)

▷ Defines a projector Pmix onto the subspace of matrices complying

with the mixing constraint.

+

Mixing

14

Mixing constraint

Loss function that promotes conservative estimates:

h(S) = ||X−
∑
j

Sj ||2

Auxiliary function

▷ Auxiliary parameters Y such that
∑

j Yj = X.

▷ Positive weights Λj such that
∑

j λj,f,t = 1.

▷ Then the following is an auxiliary function for h:

h+(S,Y) =
∑
j,f,t

|yj,f,t − sj,f,t|2

λj,f,t

Auxiliary parameters update: Yj = Sj +Λj ⊙ (X−
∑

k Sk)

▷ Defines a projector Pmix onto the subspace of matrices complying

with the mixing constraint.

+

Mixing

14

Mixing constraint

Loss function that promotes conservative estimates:

h(S) = ||X−
∑
j

Sj ||2

Auxiliary function

▷ Auxiliary parameters Y such that
∑

j Yj = X.

▷ Positive weights Λj such that
∑

j λj,f,t = 1.

▷ Then the following is an auxiliary function for h:

h+(S,Y) =
∑
j,f,t

|yj,f,t − sj,f,t|2

λj,f,t

Auxiliary parameters update: Yj = Sj +Λj ⊙ (X−
∑

k Sk)

▷ Defines a projector Pmix onto the subspace of matrices complying

with the mixing constraint.

+

Mixing

14

Mixing constraint

Loss function that promotes conservative estimates:

h(S) = ||X−
∑
j

Sj ||2

Auxiliary function

▷ Auxiliary parameters Y such that
∑

j Yj = X.

▷ Positive weights Λj such that
∑

j λj,f,t = 1.

▷ Then the following is an auxiliary function for h:

h+(S,Y) =
∑
j,f,t

|yj,f,t − sj,f,t|2

λj,f,t

Auxiliary parameters update: Yj = Sj +Λj ⊙ (X−
∑

k Sk)

▷ Defines a projector Pmix onto the subspace of matrices complying

with the mixing constraint.

+

Mixing

x

x

14

Consistency constraint

Loss function that promotes consistent estimates:

i(S) =
∑
j

||Sj − G(Sj)||2 with G = STFT ◦ iSTFT

Auxiliary function

▷ G(Sj) is the closest consistent matrix to Sj .

▷ Then i+(S,Z) =
∑

j ||Sj − Zj ||2 (where Zj ∈ Im(STFT)) is an

auxiliary function for i.

Auxiliary parameters update: Zj = G(Sj)

▷ Defines a projector Pcons onto the subspace of consistent matrices.

iSTFT

STFT

Consistency

15

Consistency constraint

Loss function that promotes consistent estimates:

i(S) =
∑
j

||Sj − G(Sj)||2 with G = STFT ◦ iSTFT

Auxiliary function

▷ G(Sj) is the closest consistent matrix to Sj .

▷ Then i+(S,Z) =
∑

j ||Sj − Zj ||2 (where Zj ∈ Im(STFT)) is an

auxiliary function for i.

Auxiliary parameters update: Zj = G(Sj)

▷ Defines a projector Pcons onto the subspace of consistent matrices.

iSTFT

STFT

Consistency

15

Consistency constraint

Loss function that promotes consistent estimates:

i(S) =
∑
j

||Sj − G(Sj)||2 with G = STFT ◦ iSTFT

Auxiliary function

▷ G(Sj) is the closest consistent matrix to Sj .

▷ Then i+(S,Z) =
∑

j ||Sj − Zj ||2 (where Zj ∈ Im(STFT)) is an

auxiliary function for i.

Auxiliary parameters update: Zj = G(Sj)

▷ Defines a projector Pcons onto the subspace of consistent matrices.

iSTFT

STFT

Consistency

15

Consistency constraint

Loss function that promotes consistent estimates:

i(S) =
∑
j

||Sj − G(Sj)||2 with G = STFT ◦ iSTFT

Auxiliary function

▷ G(Sj) is the closest consistent matrix to Sj .

▷ Then i+(S,Z) =
∑

j ||Sj − Zj ||2 (where Zj ∈ Im(STFT)) is an

auxiliary function for i.

Auxiliary parameters update: Zj = G(Sj)

▷ Defines a projector Pcons onto the subspace of consistent matrices.

iSTFT

STFT

Consistency

15

Magnitude constraint

Loss function that ensures the estimates’ magnitudes remain close to

the target value Vj estimated beforehand (e.g., using a DNN):

m(S) =
∑
j

|||Sj | −Vj ||2

Auxiliary function

▷ Auxiliary parameters U such that |Uj | = Vj .

▷ m+(S,Z) =
∑

j ||Sj −Uj ||2 is an auxiliary function for m.

Auxiliary parameters update: Uj =
Sj

|Sj |
⊙Vj

▷ Defines a projector Pmag onto the subspace of matrices whose

magnitude equals the target value.

Magnitude

16

Magnitude constraint

Loss function that ensures the estimates’ magnitudes remain close to

the target value Vj estimated beforehand (e.g., using a DNN):

m(S) =
∑
j

|||Sj | −Vj ||2

Auxiliary function

▷ Auxiliary parameters U such that |Uj | = Vj .

▷ m+(S,Z) =
∑

j ||Sj −Uj ||2 is an auxiliary function for m.

Auxiliary parameters update: Uj =
Sj

|Sj |
⊙Vj

▷ Defines a projector Pmag onto the subspace of matrices whose

magnitude equals the target value.

Magnitude

16

Magnitude constraint

Loss function that ensures the estimates’ magnitudes remain close to

the target value Vj estimated beforehand (e.g., using a DNN):

m(S) =
∑
j

|||Sj | −Vj ||2

Auxiliary function

▷ Auxiliary parameters U such that |Uj | = Vj .

▷ m+(S,Z) =
∑

j ||Sj −Uj ||2 is an auxiliary function for m.

Auxiliary parameters update: Uj =
Sj

|Sj |
⊙Vj

▷ Defines a projector Pmag onto the subspace of matrices whose

magnitude equals the target value.

Magnitude

16

Magnitude constraint

Loss function that ensures the estimates’ magnitudes remain close to

the target value Vj estimated beforehand (e.g., using a DNN):

m(S) =
∑
j

|||Sj | −Vj ||2

Auxiliary function

▷ Auxiliary parameters U such that |Uj | = Vj .

▷ m+(S,Z) =
∑

j ||Sj −Uj ||2 is an auxiliary function for m.

Auxiliary parameters update: Uj =
Sj

|Sj |
⊙Vj

▷ Defines a projector Pmag onto the subspace of matrices whose

magnitude equals the target value.

Magnitude

16

Algorithm derivation example: problem setting

Main problem: optimize the mixing objective + soft consistency penalty + hard magnitude constraint.

min
S
h(S) + σi(S) such that |Sj | = Vj

Using our auxiliary function framework, this rewrites:

such that


|Sj | = Vj

▷ Auxiliary parameters updates are already known.

▷ So let’s focus on the update on S.

17

Algorithm derivation example: problem setting

Main problem: optimize the mixing objective + soft consistency penalty + hard magnitude constraint.

min
S
h(S) + σi(S) such that |Sj | = Vj

Using our auxiliary function framework, this rewrites:

min
S,Y,Z

h+(S,Y) + σi+(S,Z) such that


|Sj | = Vj∑

j

Yj = X

Zj ∈ Im(STFT)

▷ Auxiliary parameters updates are already known.

▷ So let’s focus on the update on S.

17

Algorithm derivation example: problem setting

Main problem: optimize the mixing objective + soft consistency penalty + hard magnitude constraint.

min
S
h(S) + σi(S) such that |Sj | = Vj

Using our auxiliary function framework, this rewrites:

min
S,Y,Z

h+(S,Y) + σi+(S,Z) such that


|Sj | = Vj∑

j

Yj = X

Zj ∈ Im(STFT)

▷ Auxiliary parameters updates (Y and Z) are already known.

▷ So let’s focus on the update on S.

17

Algorithm derivation example: problem setting

Main problem: optimize the mixing objective + soft consistency penalty + hard magnitude constraint.

min
S
h(S) + σi(S) such that |Sj | = Vj

Using our auxiliary function framework, this rewrites:

min
S,Y,Z

h+(S,Y) + σi+(S,Z) such that


|Sj | = Vj∑
j

Yj = X

Zj ∈ Im(STFT)

▷ Auxiliary parameters updates (Y and Z) are already known.

▷ So let’s focus on the update on S.

17

Algorithm derivation example: update

New problem

▷ Incorporate the hard constraint using the method of Lagrange multipliers.

▷ Find a critical point for:

h+(S,Y) + σi+(S,Z) +
∑
j,f,t

δj,f,t(|sj,f,t|2 − v2j,f,t)

Update

▷ Set the partial derivative with respect to S at 0 and solve:

Sj =
Yj + σΛj ⊙ Zj

|Yj + σΛj ⊙ Zj |
⊙Vj

▷ Generalizes particular cases from the literature (σ = 0 and σ = +∞).

18

Algorithm derivation example: update

New problem

▷ Incorporate the hard constraint using the method of Lagrange multipliers.

▷ Find a critical point for:

h+(S,Y) + σi+(S,Z) +
∑
j,f,t

δj,f,t(|sj,f,t|2 − v2j,f,t)

Update

▷ Set the partial derivative with respect to S at 0 and solve:

Sj =
Yj + σΛj ⊙ Zj

|Yj + σΛj ⊙ Zj |
⊙Vj

▷ Generalizes particular cases from the literature (σ = 0 and σ = +∞).

18

Algorithm derivation example: illustration

Compact update rule using the projectors: Pmag (Pmix(S) + σΛ⊙ Pcons(S))

Check our EUSIPCO paper for all problem formulations / update schemes.

19

Algorithm derivation example: illustration

Compact update rule using the projectors: Pmag (Pmix(S) + σΛ⊙ Pcons(S))

Mixing

Magnitude

Check our EUSIPCO paper for all problem formulations / update schemes.

19

Algorithm derivation example: illustration

Compact update rule using the projectors: Pmag (Pmix(S) + σΛ⊙ Pcons(S))

Mixing

Magnitude

Check our EUSIPCO paper for all problem formulations / update schemes.

19

Algorithm derivation example: illustration

Compact update rule using the projectors: Pmag (Pmix(S) + σΛ⊙ Pcons(S))

Mixing

Magnitude

Check our EUSIPCO paper for all problem formulations / update schemes.

19

Algorithm derivation example: illustration

Compact update rule using the projectors: Pmag (Pmix(S) + σΛ⊙ Pcons(S))

Mixing

Magnitude

Check our EUSIPCO paper for all problem formulations / update schemes.

19

Algorithm derivation example: illustration

Compact update rule using the projectors: Pmag (Pmix(S) + σΛ⊙ Pcons(S))

Mixing

Magnitude

Check our EUSIPCO paper for all problem formulations / update schemes.

19

Algorithm derivation example: illustration

Compact update rule using the projectors: Pmag (Pmix(S) + σΛ⊙ Pcons(S))

Mixing

Magnitude

Check our EUSIPCO paper for all problem formulations / update schemes.
19

Experiments

Task: speech enhancement

▷ Clean speech (VoiceBank) + noise (DEMAND: living room, bus, and public square noises).

▷ Magnitudes are estimated beforehand using Open-Unmix.

Separation quality (signal-to-distortion ratio):

Accurate magnitudes Less accurate magnitudes

Baseline (MISI) 19.6 7.7

Proposed (1) 19.6 7.7

Proposed (2) 19.6 7.5

Proposed (3) 19.3 8.1

▷ Some novel algorithms are interesting alternatives.

▷ Perspectives: unfold these into neural networks for time-domain training.

20

Experiments

Task: speech enhancement

▷ Clean speech (VoiceBank) + noise (DEMAND: living room, bus, and public square noises).

▷ Magnitudes are estimated beforehand using Open-Unmix.

Separation quality (signal-to-distortion ratio):

Accurate magnitudes Less accurate magnitudes

Baseline (MISI) 19.6 7.7

Proposed (1) 19.6 7.7

Proposed (2) 19.6 7.5

Proposed (3) 19.3 8.1

▷ Some novel algorithms are interesting alternatives.

▷ Perspectives: unfold these into neural networks for time-domain training.

20

Experiments

Task: speech enhancement

▷ Clean speech (VoiceBank) + noise (DEMAND: living room, bus, and public square noises).

▷ Magnitudes are estimated beforehand using Open-Unmix.

Separation quality (signal-to-distortion ratio):

Accurate magnitudes Less accurate magnitudes

Baseline (MISI) 19.6 7.7

Proposed (1) 19.6 7.7

Proposed (2) 19.6 7.5

Proposed (3) 19.3 8.1

▷ Some novel algorithms are interesting alternatives.

▷ Perspectives: unfold these into neural networks for time-domain training.

20

Conclusion

Current trends

From nonnegative to time-domain deep learning.

✓ Performance in controlled conditions, no more phase problem.

✗ Greediness in (annotated) training data.

✗ Lacks interpretability and flexibility.

... and then back to STFT-domain deep learning.

✓ Robustness/flexibility of time-frequency processing.

✓ Performance of processing all the data exhaustively.

✗ Using a real/imaginary part decomposition of the STFT is sub-optimal.

21

Current trends

From nonnegative to time-domain deep learning.

✓ Performance in controlled conditions, no more phase problem.

✗ Greediness in (annotated) training data.

✗ Lacks interpretability and flexibility.

... and then back to STFT-domain deep learning.

✓ Robustness/flexibility of time-frequency processing.

✓ Performance of processing all the data exhaustively.

✗ Using a real/imaginary part decomposition of the STFT is sub-optimal.

21

Current trends

From nonnegative to time-domain deep learning.

✓ Performance in controlled conditions, no more phase problem.

✗ Greediness in (annotated) training data.

✗ Lacks interpretability and flexibility.

... and then back to STFT-domain deep learning.

✓ Robustness/flexibility of time-frequency processing.

✓ Performance of processing all the data exhaustively.

✗ Using a real/imaginary part decomposition of the STFT is sub-optimal.

21

Current trends

From nonnegative to time-domain deep learning.

✓ Performance in controlled conditions, no more phase problem.

✗ Greediness in (annotated) training data.

✗ Lacks interpretability and flexibility.

... and then back to STFT-domain deep learning.

✓ Robustness/flexibility of time-frequency processing.

✓ Performance of processing all the data exhaustively.

✗ Using a real/imaginary part decomposition of the STFT is sub-optimal.
21

The proposed alternative

▷ The room for improvement of phase recovery: more potential gain than with magnitudes.

▷ Move towards deep phase recovery for increased performance.

Transform Synthesis
Spectrogram model

Phase model

Spectrogram inversion

0 v1 v2

x
(i t)
1

x
(i t)
2

x
(i t)
1 + x

(i t)
2

x

E(i t)

y
(i t+1)
1

y
(i t+1)
2

x
(i t+1)
1

x
(i t+1)
2

Work in progress:

▷ Design deep phase prior models.

▷ Unfold iterative algorithms into neural networks for time-domain separation.

22

Thanks!

https://magronp.github.io/

https://github.com/magronp/

	Introduction
	Audio source separation
	Phase models
	Probabilistic phase modeling
	Spectrogram inversion algorithms
	Conclusion

