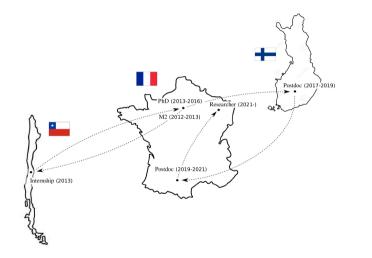
Towards deep phase recovery for audio source separation

Seminar at Audio Research Group, Tampere University, Finland August 30, 2023

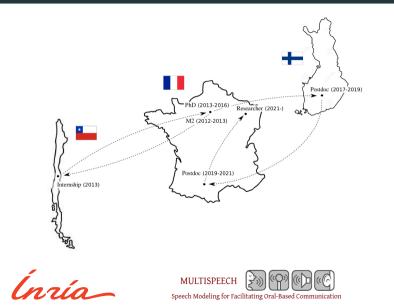
Paul Magron

Université de Lorraine, CNRS, Inria, LORIA, Nancy, France

A brief history of me



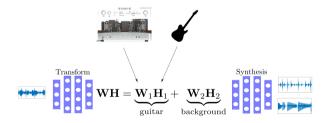
A brief history of me



- ▷ Speech enhancement for auditory neuropathy (with N. Monir, R. Serizel).
- ▷ Audio inpainting / restoration (with L. Bahrman, M. Krémé, A. Deleforge).

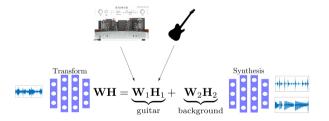
Research themes

- ▷ Speech enhancement for auditory neuropathy (with N. Monir, R. Serizel).
- ▷ Audio inpainting / restoration (with L. Bahrman, M. Krémé, A. Deleforge).
- ▷ Combining dictionary models and deep learning (with L. Lalay, M. Sadeghi).
- ▷ Joint synthesis / source separation.



Research themes

- ▷ Speech enhancement for auditory neuropathy (with N. Monir, R. Serizel).
- ▷ Audio inpainting / restoration (with L. Bahrman, M. Krémé, A. Deleforge).
- ▷ Combining dictionary models and deep learning (with L. Lalay, M. Sadeghi).
- ▷ Joint synthesis / source separation.



▷ **Source separation** (with so many people).

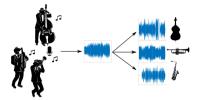
Audio source separation

▷ Audio signals are composed of several constitutive sounds: multiple speakers, background noise, domestic sounds, musical instruments...

Audio signals are composed of several constitutive sounds: multiple speakers, background noise, domestic sounds, musical instruments...

Source separation = recovering the sources from the mixture.

- ▷ Augmented mixing (from mono to stereo).
- An important preprocessing for many analysis tasks (speech recognition, melody extraction...).



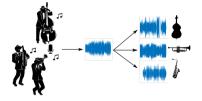
Audio signals are composed of several constitutive sounds: multiple speakers, background noise, domestic sounds, musical instruments...

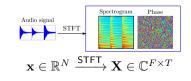
Source separation = recovering the sources from the mixture.

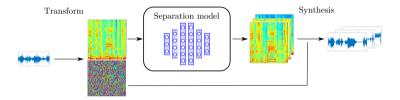
- ▷ Augmented mixing (from mono to stereo).
- An important preprocessing for many analysis tasks (speech recognition, melody extraction...).

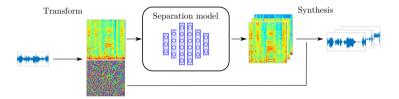
Framework

- ▷ Monaural signals.
- ▷ Short-time Fourier transform (STFT)-domain separation.
- \triangleright Mixture model: $\mathbf{X} = \sum_{j=1}^{J} \mathbf{S}_{j}$.

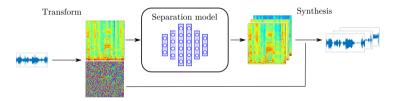




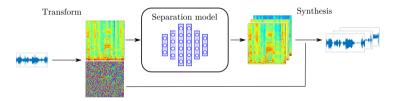




▷ A nonnegative representation is processed (e.g., magnitude or power spectrogram).



- ▷ A nonnegative representation is processed (e.g., magnitude or power spectrogram).
- ▷ The separator is a deep neural network, trained using a (large) dataset with isolated sources.

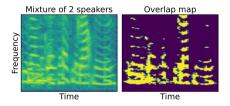


- ▷ A nonnegative representation is processed (e.g., magnitude or power spectrogram).
- ▷ The separator is a deep neural network, trained using a (large) dataset with isolated sources.
- ▷ The mixture's phase is assigned to each source using a Wiener-like filter or masking process.

The phase problem

X Nonnegative masking: Issues in sound quality when sources *overlap* in the TF domain.

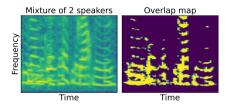
$$\begin{split} |X| \neq |S_1| + |S_2| \\ \angle X \neq \angle S_1 \text{ or } \angle S_2 \end{split}$$



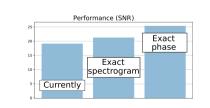
The phase problem

X Nonnegative masking: Issues in sound quality when sources *overlap* in the TF domain.

$$\begin{split} |X| \neq |S_1| + |S_2| \\ \angle X \neq \angle S_1 \text{ or } \angle S_2 \end{split}$$

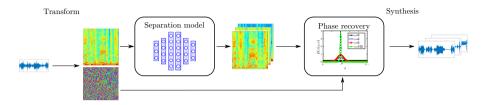


The potential of phase recovery

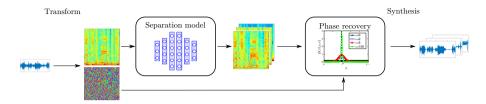


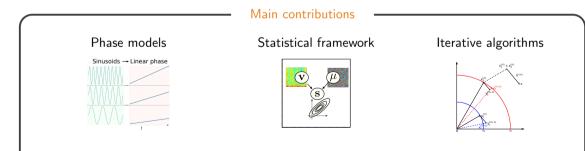
Given the current state-of-the-art, more potential gain in phase recovery than in magnitude estimation.

Phase recovery for source separation

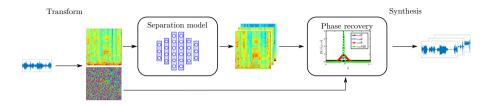


Phase recovery for source separation

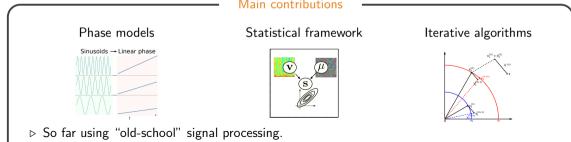




Phase recovery for source separation



Main contributions



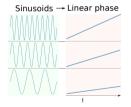
Perspective: leveraging deep learning for phase recovery. ⊳

Phase models

Consider a mixture of sinusoids: $x(n) = \sum_{p=1}^{P} A_p \sin(2\pi \underbrace{\nu_p}_{n \text{ normalized frequency}} n + \phi_{0,p}).$

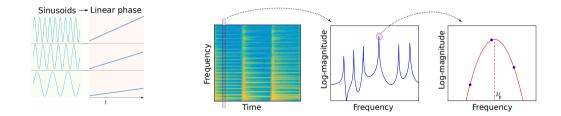
Consider a mixture of sinusoids: $x(n) = \sum_{p=1}^{P} A_p \sin(2\pi \underbrace{\nu_p}_{n \neq 0,p} n + \phi_{0,p}).$

The STFT phase follows: $\mu_{f,t} = \mu_{f,t-1} + l\nu_{f,t}$



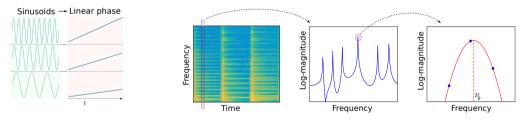
Consider a mixture of sinusoids: $x(n) = \sum_{p=1}^{P} A_p \sin(2\pi \underbrace{\nu_p}_{n \text{ normalized frequency}} n + \phi_{0,p}).$

The STFT phase follows: $\mu_{f,t} = \mu_{f,t-1} + l\nu_{f,t}$



Consider a mixture of sinusoids: $x(n) = \sum_{p=1}^{P} A_p \sin(2\pi \underbrace{\nu_p}_{n \text{ normalized frequency}} n + \phi_{0,p}).$

The STFT phase follows: $\mu_{f,t} = \mu_{f,t-1} + l\nu_{f,t}$



- ✓ Useful for source separation (and audio inpainting) applications.
- **X** The performance is limited due to the simplicity of the model.

Recently: Some attempts at predicting the phase using DNNs.

- X Generic architectures which do not account for the particular phase structure.
- X Cumbersome two-stage approaches to resolve some ambiguities.

Recently: Some attempts at predicting the phase using DNNs.

- X Generic architectures which do not account for the particular phase structure.
- X Cumbersome two-stage approaches to resolve some ambiguities.

Proposal: Generalize phase models from signal analysis using deep learning.

$$\mu_t = \mu_{t-1} + l\nu_t \quad \rightarrow \quad \mu_t = \underbrace{\mathcal{R}(\nu_t, \mu_{t-1}, \dots, \mu_{t-\tau})}_{\text{temporal dynamics}} \quad \text{with} \quad \nu_t = \underbrace{\mathcal{C}(|\mathbf{x}|_t)}_{\text{frequency extraction}}$$

Recently: Some attempts at predicting the phase using DNNs.

- X Generic architectures which do not account for the particular phase structure.
- X Cumbersome two-stage approaches to resolve some ambiguities.

Proposal: Generalize phase models from signal analysis using deep learning.

$$\boldsymbol{\mu}_t = \boldsymbol{\mu}_{t-1} + l\boldsymbol{\nu}_t \quad \rightarrow \quad \boldsymbol{\mu}_t = \underbrace{\mathcal{R}(\boldsymbol{\nu}_t, \boldsymbol{\mu}_{t-1}, \dots, \boldsymbol{\mu}_{t-\tau})}_{\text{temporal dynamics}} \quad \text{with} \quad \boldsymbol{\nu}_t = \underbrace{\mathcal{C}(|\mathbf{x}|_t)}_{\text{frequency extraction}}$$

- Architectural choices (non-linearities, loss functions) adapted to the phase (periodicity).
- \triangleright Identify and exploit perceptual phase invariants.

Probabilistic phase modeling

Phase-aware Gaussian models

The ubiquitous isotropic Gaussian model:

$$s \sim \mathcal{N}_{\mathbb{C}}(m,\Gamma)$$
 with $\Gamma = egin{pmatrix} \gamma & 0 \ 0 & \gamma \end{pmatrix}$

Equivalent to assuming a uniform phase $\angle s \sim \mathcal{U}_{[0,2\pi[}$.

X Impossible to promote any phase structure / prior.

Phase-aware Gaussian models

The ubiquitous isotropic Gaussian model:

$$s \sim \mathcal{N}_{\mathbb{C}}(m,\Gamma)$$
 with $\Gamma = egin{pmatrix} \gamma & 0 \ 0 & \gamma \end{pmatrix}$

Equivalent to assuming a uniform phase $\angle s \sim \mathcal{U}_{[0,2\pi[}$.

X Impossible to promote any phase structure / prior.

Anisotropic Gaussian model

$$s \sim \mathcal{N}_{\mathbb{C}}(m, \Gamma)$$
 with $\Gamma = egin{pmatrix} \gamma & c \ ar{c} & \gamma \end{pmatrix}$

c is the *relation* term, defined as a function of the phase parameter $\mu.$

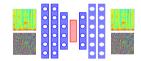
✓ Allows to incorporate phase priors; nice performance boost for source separation applications (e.g., phase-aware Wiener filter).

X Bayesian deep learning / variational autoencoders (VAE) are limited to isotropic distributions.

X Bayesian deep learning / variational autoencoders (VAE) are limited to isotropic distributions.

Proposal: Combine deep learning and anisotropic modeling, e.g., via anisotropic VAEs.

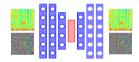
$$\underbrace{\mathbf{z} | \mathbf{x} \sim \mathcal{N}_{\mathbb{C}}(\psi_{\mathsf{enc}}(\mathbf{x}), \Gamma_{\mathsf{enc}})}_{\mathsf{encoder}} \quad \mathsf{and} \quad \underbrace{\mathbf{s} | \mathbf{z} \sim \mathcal{N}_{\mathbb{C}}(\psi_{\mathsf{dec}}(\mathbf{z}), \Gamma_{\mathsf{dec}})}_{\mathsf{decoder}}$$



X Bayesian deep learning / variational autoencoders (VAE) are limited to isotropic distributions.

Proposal: Combine deep learning and anisotropic modeling, e.g., via anisotropic VAEs.

$$\underbrace{\mathbf{z} | \mathbf{x} \sim \mathcal{N}_{\mathbb{C}}(\psi_{\mathsf{enc}}(\mathbf{x}), \Gamma_{\mathsf{enc}})}_{\mathsf{encoder}} \quad \mathsf{and} \quad \underbrace{\mathbf{s} | \mathbf{z} \sim \mathcal{N}_{\mathbb{C}}(\psi_{\mathsf{dec}}(\mathbf{z}), \Gamma_{\mathsf{dec}})}_{\mathsf{decoder}}$$



▷ A strong effort in modeling and optimization is needed for deriving appropriate estimation techniques.

Spectrogram inversion algorithms

Goal: retrieve (complex-valued) STFTs from (non-negative) spectrograms.

- $\triangleright~$ Identify important properties in the STFT domain.
- $\triangleright\,$ Promote them by defining an optimization problem.
- $\triangleright\,$ Solve it using some optimization strategy.

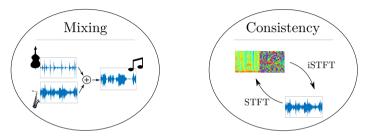
Goal: retrieve (complex-valued) STFTs from (non-negative) spectrograms.

- $\triangleright~$ Identify important properties in the STFT domain.
- ▷ Promote them by defining an optimization problem.
- $\triangleright\,$ Solve it using some optimization strategy.
- Many algorithms in the literature!
- Which problem formulation is the most appropriate in practice?
- Proposal: let's define a general spectrogram inversion framework.

STFT-domain constraints

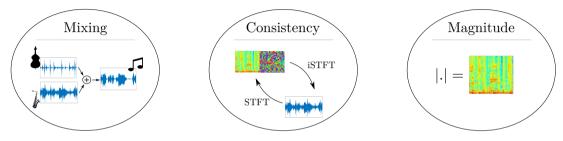
▷ Mixing: the estimates should be *conservative* = sum up to the mixture, such that there is no creation/destruction of energy.

STFT-domain constraints



- ▷ Mixing: the estimates should be *conservative* = sum up to the mixture, such that there is no creation/destruction of energy.
- Consistency: the estimates (=complex-valued matrices) should be the STFT of time-domain signals.

STFT-domain constraints



- ▷ Mixing: the estimates should be *conservative* = sum up to the mixture, such that there is no creation/destruction of energy.
- Consistency: the estimates (=complex-valued matrices) should be the STFT of time-domain signals.
- Magnitude match: the estimates' magnitude should remain close to the output of the DNN computed beforehand.

Proposal: A general framework for deriving spectrogram inversion algorithms

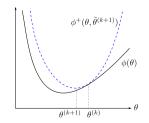
- ▷ For each property/objective/constraint, define a loss function (and an auxiliary function).
- ▷ Combine them (soft penalties / hard constraints) to formulate optimization problems.
- ▷ Derive algorithms that alternate projections on the corresponding constraints subspaces.

Proposal: A general framework for deriving spectrogram inversion algorithms

- ▷ For each property/objective/constraint, define a loss function (and an auxiliary function).
- ▷ Combine them (soft penalties / hard constraints) to formulate optimization problems.
- $\triangleright~$ Derive algorithms that alternate projections on the corresponding constraints subspaces.

Auxiliary function method

- $\triangleright \text{ Considering minimization of } \phi, \text{ construct } \phi^+ \text{ such that:} \\ \phi(\theta) = \min_{\tilde{\theta}} \phi^+(\theta, \tilde{\theta}).$
- $\triangleright \ \phi$ is non-increasing when minimizing ϕ^+ with respect to θ and $\tilde{\theta}$ alternately.
 - ✓ Convergence, successfully used in audio, no hyperparameter to tune.



Loss function that promotes conservative estimates:

$$h(\mathbf{S}) = ||\mathbf{X} - \sum_{j} \mathbf{S}_{j}||^2$$

Loss function that promotes conservative estimates:

$$h(\mathbf{S}) = ||\mathbf{X} - \sum_{j} \mathbf{S}_{j}||^{2}$$

Auxiliary function

- \triangleright Auxiliary parameters **Y** such that $\sum_{j} \mathbf{Y}_{j} = \mathbf{X}$.
- \triangleright Positive weights Λ_j such that $\sum_j \lambda_{j,f,t} = 1$.
- \triangleright Then the following is an auxiliary function for h:

$$h^+(\mathbf{S}, \mathbf{Y}) = \sum_{j, f, t} \frac{|y_{j, f, t} - s_{j, f, t}|^2}{\lambda_{j, f, t}}$$

Loss function that promotes conservative estimates:

$$h(\mathbf{S}) = ||\mathbf{X} - \sum_{j} \mathbf{S}_{j}||^{2}$$

Auxiliary function

- \triangleright Auxiliary parameters **Y** such that $\sum_{j} \mathbf{Y}_{j} = \mathbf{X}$.
- \triangleright Positive weights Λ_j such that $\sum_j \lambda_{j,f,t} = 1$.
- \triangleright Then the following is an auxiliary function for h:

$$h^+(\mathbf{S}, \mathbf{Y}) = \sum_{j, f, t} \frac{|y_{j, f, t} - s_{j, f, t}|^2}{\lambda_{j, f, t}}$$

Auxiliary parameters update: $\mathbf{Y}_j = \mathbf{S}_j + \mathbf{\Lambda}_j \odot (\mathbf{X} - \sum_k \mathbf{S}_k)$

C	omplex-valued matrice	es $\mathbb{C}^{F \times T}$
	Mixing	
(- - -

Loss function that promotes conservative estimates:

$$h(\mathbf{S}) = ||\mathbf{X} - \sum_{j} \mathbf{S}_{j}||^{2}$$

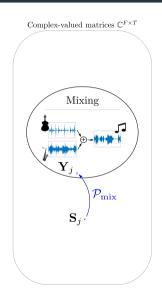
Auxiliary function

- \triangleright Auxiliary parameters **Y** such that $\sum_{j} \mathbf{Y}_{j} = \mathbf{X}$.
- \triangleright Positive weights Λ_j such that $\sum_j \lambda_{j,f,t} = 1$.
- \triangleright Then the following is an auxiliary function for h:

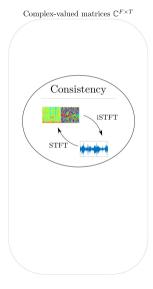
$$h^+(\mathbf{S}, \mathbf{Y}) = \sum_{j, f, t} \frac{|y_{j, f, t} - s_{j, f, t}|^2}{\lambda_{j, f, t}}$$

Auxiliary parameters update: $\mathbf{Y}_j = \mathbf{S}_j + \mathbf{\Lambda}_j \odot (\mathbf{X} - \sum_k \mathbf{S}_k)$

 \triangleright Defines a projector \mathcal{P}_{mix} onto the subspace of matrices complying with the mixing constraint.



$$i(\mathbf{S}) = \sum_j ||\mathbf{S}_j - \mathcal{G}(\mathbf{S}_j)||^2$$
 with $\mathcal{G} = \mathsf{STFT} \circ \mathsf{iSTFT}$



$$i(\mathbf{S}) = \sum_j ||\mathbf{S}_j - \mathcal{G}(\mathbf{S}_j)||^2$$
 with $\mathcal{G} = \mathsf{STFT} \circ \mathsf{iSTFT}$

Auxiliary function

- $\triangleright \mathcal{G}(\mathbf{S}_j)$ is the closest consistent matrix to \mathbf{S}_j .
- ▷ Then $i^+(\mathbf{S}, \mathbf{Z}) = \sum_j ||\mathbf{S}_j \mathbf{Z}_j||^2$ (where $\mathbf{Z}_j \in \mathsf{Im}(\mathsf{STFT})$) is an auxiliary function for *i*.

Complex-valued matrices $\mathbb{C}^{F \times \mathbb{C}}$	T
Consistency	
ISTFT	/
5111	

$$i(\mathbf{S}) = \sum_j ||\mathbf{S}_j - \mathcal{G}(\mathbf{S}_j)||^2$$
 with $\mathcal{G} = \mathsf{STFT} \circ \mathsf{iSTFT}$

Auxiliary function

- $\triangleright \ \mathcal{G}(\mathbf{S}_j)$ is the closest consistent matrix to \mathbf{S}_j .
- ▷ Then $i^+(\mathbf{S}, \mathbf{Z}) = \sum_j ||\mathbf{S}_j \mathbf{Z}_j||^2$ (where $\mathbf{Z}_j \in \mathsf{Im}(\mathsf{STFT})$) is an auxiliary function for *i*.

Auxiliary parameters update: $\mathbf{Z}_j = \mathcal{G}(\mathbf{S}_j)$

Comp	lex-valued matrices $\mathbb{C}^{F \times \mathbb{C}}$
/	Consistency
/ -	\
/	
	iSTFT
1	*
$\langle \rangle$	
	STFT

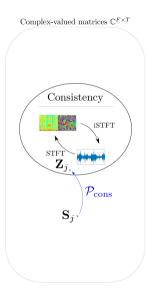
$$i(\mathbf{S}) = \sum_j ||\mathbf{S}_j - \mathcal{G}(\mathbf{S}_j)||^2$$
 with $\mathcal{G} = \mathsf{STFT} \circ \mathsf{iSTFT}$

Auxiliary function

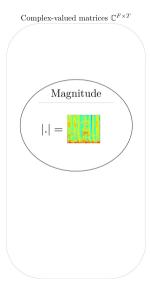
- $\triangleright \ \mathcal{G}(\mathbf{S}_j)$ is the closest consistent matrix to \mathbf{S}_j .
- ▷ Then $i^+(\mathbf{S}, \mathbf{Z}) = \sum_j ||\mathbf{S}_j \mathbf{Z}_j||^2$ (where $\mathbf{Z}_j \in \mathsf{Im}(\mathsf{STFT})$) is an auxiliary function for *i*.

Auxiliary parameters update: $\mathbf{Z}_j = \mathcal{G}(\mathbf{S}_j)$

 \triangleright Defines a projector \mathcal{P}_{cons} onto the subspace of consistent matrices.



$$m(\mathbf{S}) = \sum_{j} |||\mathbf{S}_{j}| - \mathbf{V}_{j}||^{2}$$

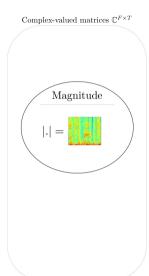


$$m(\mathbf{S}) = \sum_{j} |||\mathbf{S}_{j}| - \mathbf{V}_{j}||^{2}$$

Auxiliary function

 $\triangleright \; \mathsf{Auxiliary} \; \mathsf{parameters} \; \mathbf{U} \; \mathsf{such} \; \mathsf{that} \; |\mathbf{U}_j| = \mathbf{V}_j.$

 $\triangleright m^+(\mathbf{S}, \mathbf{Z}) = \sum_j ||\mathbf{S}_j - \mathbf{U}_j||^2$ is an auxiliary function for m.

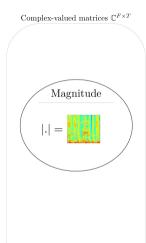


$$m(\mathbf{S}) = \sum_{j} |||\mathbf{S}_{j}| - \mathbf{V}_{j}||^{2}$$

Auxiliary function

▷ Auxiliary parameters U such that $|U_j| = V_j$. ▷ $m^+(\mathbf{S}, \mathbf{Z}) = \sum_j ||\mathbf{S}_j - \mathbf{U}_j||^2$ is an auxiliary function for m.

Auxiliary parameters update: $\mathbf{U}_j = \frac{\mathbf{S}_j}{|\mathbf{S}_j|} \odot \mathbf{V}_j$



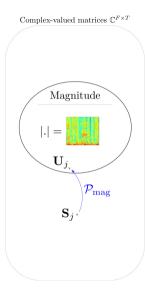
$$m(\mathbf{S}) = \sum_{j} |||\mathbf{S}_{j}| - \mathbf{V}_{j}||^{2}$$

Auxiliary function

▷ Auxiliary parameters U such that
$$|U_j| = V_j$$
.
▷ $m^+(\mathbf{S}, \mathbf{Z}) = \sum_j ||\mathbf{S}_j - \mathbf{U}_j||^2$ is an auxiliary function for m .

Auxiliary parameters update: $\mathbf{U}_j = \frac{\mathbf{S}_j}{|\mathbf{S}_j|} \odot \mathbf{V}_j$

 $\triangleright~$ Defines a projector \mathcal{P}_{mag} onto the subspace of matrices whose magnitude equals the target value.



Main problem: optimize the mixing objective + soft consistency penalty + hard magnitude constraint.

 $\min_{\mathbf{S}} h(\mathbf{S}) + \sigma i(\mathbf{S})$ such that $|\mathbf{S}_j| = \mathbf{V}_j$

Main problem: optimize the mixing objective + soft consistency penalty + hard magnitude constraint.

 $\min_{\mathbf{S}} h(\mathbf{S}) + \sigma i(\mathbf{S})$ such that $|\mathbf{S}_j| = \mathbf{V}_j$

Using our auxiliary function framework, this rewrites:

$$\min_{\mathbf{S},\mathbf{Y},\mathbf{Z}} h^{+}(\mathbf{S},\mathbf{Y}) + \sigma i^{+}(\mathbf{S},\mathbf{Z}) \quad \text{such that} \quad \begin{cases} |\mathbf{S}_{j}| = \mathbf{V}_{j} \\ \sum_{j} \mathbf{Y}_{j} = \mathbf{X} \\ \mathbf{Z}_{j} \in \mathsf{Im}(\mathsf{STFT}) \end{cases}$$

(101 17

Main problem: optimize the mixing objective + soft consistency penalty + hard magnitude constraint.

 $\min_{\mathbf{S}} h(\mathbf{S}) + \sigma i(\mathbf{S})$ such that $|\mathbf{S}_j| = \mathbf{V}_j$

Using our auxiliary function framework, this rewrites:

$$\min_{\mathbf{S},\mathbf{Y},\mathbf{Z}} h^{+}(\mathbf{S},\mathbf{Y}) + \sigma i^{+}(\mathbf{S},\mathbf{Z}) \quad \text{such that} \quad \begin{cases} |\mathbf{S}_{j}| = \mathbf{V}_{j} \\ \sum_{j} \mathbf{Y}_{j} = \mathbf{X} \\ \mathbf{Z}_{j} \in \mathsf{Im}(\mathsf{STFT}) \end{cases}$$

 \triangleright Auxiliary parameters updates (**Y** and **Z**) are already known.

Main problem: optimize the mixing objective + soft consistency penalty + hard magnitude constraint.

 $\min_{\mathbf{S}} h(\mathbf{S}) + \sigma i(\mathbf{S})$ such that $|\mathbf{S}_j| = \mathbf{V}_j$

Using our auxiliary function framework, this rewrites:

$$\min_{\mathbf{S},\mathbf{Y},\mathbf{Z}} h^+(\mathbf{S},\mathbf{Y}) + \sigma i^+(\mathbf{S},\mathbf{Z}) \quad \text{such that} \quad \begin{cases} |\mathbf{S}_j| = \mathbf{V}_j \\ \sum_j \mathbf{Y}_j = \mathbf{X} \\ \mathbf{Z}_j \in \mathsf{Im}(\mathsf{STFT}) \end{cases}$$

1.....

 \triangleright Auxiliary parameters updates (Y and Z) are already known.

 $\triangleright\,$ So let's focus on the update on ${\bf S}.$

New problem

- ▷ Incorporate the hard constraint using the method of Lagrange multipliers.
- \triangleright Find a critical point for:

$$h^{+}(\mathbf{S}, \mathbf{Y}) + \sigma i^{+}(\mathbf{S}, \mathbf{Z}) + \sum_{j, f, t} \delta_{j, f, t} (|s_{j, f, t}|^{2} - v_{j, f, t}^{2})$$

New problem

- ▷ Incorporate the hard constraint using the method of Lagrange multipliers.
- \triangleright Find a critical point for:

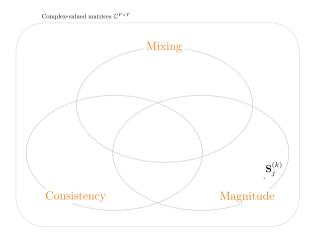
$$h^{+}(\mathbf{S}, \mathbf{Y}) + \sigma i^{+}(\mathbf{S}, \mathbf{Z}) + \sum_{j, f, t} \delta_{j, f, t} (|s_{j, f, t}|^{2} - v_{j, f, t}^{2})$$

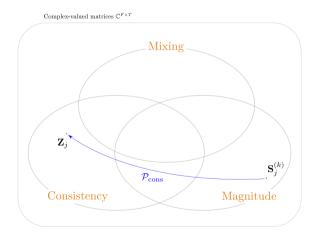
Update

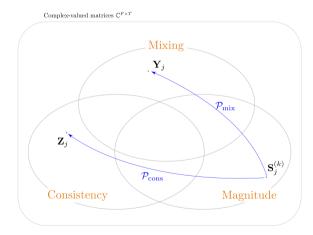
 \triangleright Set the partial derivative with respect to ${\bf S}$ at 0 and solve:

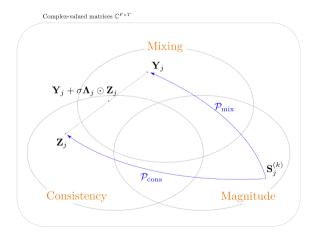
$$\mathbf{S}_j = rac{\mathbf{Y}_j + \sigma \mathbf{\Lambda}_j \odot \mathbf{Z}_j}{|\mathbf{Y}_j + \sigma \mathbf{\Lambda}_j \odot \mathbf{Z}_j|} \odot \mathbf{V}_j$$

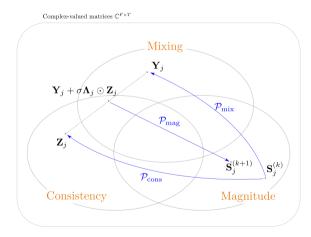
 \triangleright Generalizes particular cases from the literature ($\sigma = 0$ and $\sigma = +\infty$).



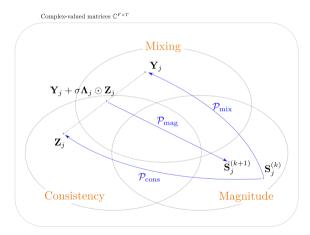








Compact update rule using the projectors: $\mathcal{P}_{mag}\left(\mathcal{P}_{mix}(\mathbf{S}) + \sigma \mathbf{\Lambda} \odot \mathcal{P}_{cons}(\mathbf{S})\right)$



Check our EUSIPCO paper for all problem formulations / update schemes.

Experiments

Task: speech enhancement

- ▷ Clean speech (VoiceBank) + noise (DEMAND: living room, bus, and public square noises).
- ▷ Magnitudes are estimated beforehand using Open-Unmix.

Experiments

Task: speech enhancement

- ▷ Clean speech (VoiceBank) + noise (DEMAND: living room, bus, and public square noises).
- ▷ Magnitudes are estimated beforehand using Open-Unmix.

Separation quality (signal-to-distortion ratio):

	Accurate magnitudes	Less accurate magnitudes
Baseline (MISI)	19.6	7.7
Proposed (1)	19.6	7.7
Proposed (2)	19.6	7.5
Proposed (3)	19.3	8.1

Experiments

Task: speech enhancement

- ▷ Clean speech (VoiceBank) + noise (DEMAND: living room, bus, and public square noises).
- ▷ Magnitudes are estimated beforehand using Open-Unmix.

Separation quality (signal-to-distortion ratio):

	Accurate magnitudes	Less accurate magnitudes
Baseline (MISI)	19.6	7.7
Proposed (1)	19.6	7.7
Proposed (2)	19.6	7.5
Proposed (3)	19.3	8.1

▷ Some novel algorithms are interesting alternatives.

 $\triangleright\,$ Perspectives: unfold these into neural networks for time-domain training.

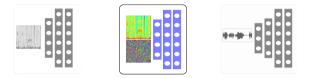
Conclusion

From nonnegative to time-domain deep learning.

✓ Performance in controlled conditions, no more phase problem.

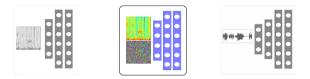
From nonnegative to time-domain deep learning.

- ✓ Performance in controlled conditions, no more phase problem.
- **X** Greediness in (annotated) training data.
- X Lacks interpretability and flexibility.



From nonnegative to time-domain deep learning.

- ✓ Performance in controlled conditions, no more phase problem.
- **X** Greediness in (annotated) training data.
- X Lacks interpretability and flexibility.
- ... and then back to STFT-domain deep learning.
 - ✓ Robustness/flexibility of time-frequency processing.
 - ✓ Performance of processing all the data exhaustively.

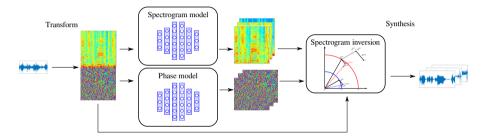


From nonnegative to time-domain deep learning.

- Performance in controlled conditions, no more phase problem.
- **X** Greediness in (annotated) training data.
- X Lacks interpretability and flexibility.
- ... and then back to STFT-domain deep learning.
 - Robustness/flexibility of time-frequency processing.
 - ✓ Performance of processing all the data exhaustively.
 - **X** Using a real/imaginary part decomposition of the STFT is sub-optimal.

The proposed alternative

- ▷ The room for improvement of phase recovery: more potential gain than with magnitudes.
- ▷ Move towards **deep phase recovery** for increased performance.



Work in progress:

- > Design deep phase prior models.
- ▷ Unfold iterative algorithms into neural networks for time-domain separation.

Thanks!

https://magronp.github.io/

https://github.com/magronp/

