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Introduction



Audio source separation

. Audio signals are composed of several constitutive sounds: multiple speakers, background noise,

domestic sounds, musical instruments...

Source separation = recovering the sources from the mixture.

. Augmented mixing (from mono to stereo).

. An important preprocessing for many analysis tasks

(speech recognition, melody extraction...).

Framework

. Monaural signals.

. Short-time Fourier transform (STFT)-domain separation.

. Mixture model: X =
∑J
j=1 Sj .

STFT

Audio signal

Spectrogram Phase

x ∈ RN STFT−−−→ X ∈ CF×T
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Typical separation pipeline

Nonnegative time-frequency (TF) masking:

Transform Synthesis
Separation model

. A nonnegative representation is processed (e.g., magnitude or power spectrogram).

. The separator is a deep neural network, trained using a (large) dataset with isolated sources.

. The mixture’s phase is assigned to each source using a Wiener-like filter or masking process.

7 Issues in sound quality when sources overlap in the TF domain.

2



Typical separation pipeline

Nonnegative time-frequency (TF) masking:

Transform Synthesis
Separation model

. A nonnegative representation is processed (e.g., magnitude or power spectrogram).

. The separator is a deep neural network, trained using a (large) dataset with isolated sources.

. The mixture’s phase is assigned to each source using a Wiener-like filter or masking process.

7 Issues in sound quality when sources overlap in the TF domain.

2



Typical separation pipeline

Nonnegative time-frequency (TF) masking:

Transform Synthesis
Separation model

. A nonnegative representation is processed (e.g., magnitude or power spectrogram).

. The separator is a deep neural network, trained using a (large) dataset with isolated sources.

. The mixture’s phase is assigned to each source using a Wiener-like filter or masking process.

7 Issues in sound quality when sources overlap in the TF domain.

2



Typical separation pipeline

Nonnegative time-frequency (TF) masking:

Transform Synthesis
Separation model

. A nonnegative representation is processed (e.g., magnitude or power spectrogram).

. The separator is a deep neural network, trained using a (large) dataset with isolated sources.

. The mixture’s phase is assigned to each source using a Wiener-like filter or masking process.

7 Issues in sound quality when sources overlap in the TF domain.

2



Typical separation pipeline

Nonnegative time-frequency (TF) masking:

Transform Synthesis
Separation model

. A nonnegative representation is processed (e.g., magnitude or power spectrogram).

. The separator is a deep neural network, trained using a (large) dataset with isolated sources.

. The mixture’s phase is assigned to each source using a Wiener-like filter or masking process.

7 Issues in sound quality when sources overlap in the TF domain.

2



Phase recovery for source separation

Transform Synthesis

Separation model
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Phase recovery

Remark: what about current (complex-valued / time-domain) approaches?

3 State-of-the-art results, alleviate the phase issue.

7 Larger models (more costly), less interpretable, lack robustness.

Optimization-based algorithms

. Preserves the magnitude/phase structure.

. Allow for time-domain training through deep unfolding.

. Can be combined with deep phase priors as initialization.
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Spectrogram inversion algorithms

Key ingredients to derive such algorithms:

. Important properties in the STFT domain.

. Hard constraints vs. soft penalties.

. Optimization strategy.

Problem

. Many algorithms in the literature!

. Which formulation is the most appropriate?

Mixing

Magnitude

Proposal

A general framework for deriving spectrogram inversion algorithms

based on these STFT constraints.
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Proposed framework



Overview

Proposed framework

. For each property/objective/constraint, define a loss function (and an auxiliary function).

. Combine them (soft penalties / hard constraints) to formulate optimization problems.

. Derive algorithms that alternate projections on the corresponding constraints subspaces.

Auxiliary function method

. Considering minimization of φ, construct φ+ such that:

φ(θ) = minθ̃ φ
+(θ, θ̃).

. φ is non-increasing when minimizing φ+ with respect to θ and θ̃

alternately.

3 Convergence, successfully used in audio, no hyperparameter to tune.
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STFT-domain constraints

+

Mixing

iSTFT

STFT

Consistency Magnitude

. Mixing: the estimates should be conservative = sum up to the mixture, such that there is no

creation/destruction of energy.

. Consistency: the estimates (=complex-valued matrices) should be the STFT of time-domain

signals.

. Magnitude match: the estimates’ magnitude should remain close to the output of the DNN

computed beforehand.
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Mixing constraint

Loss function that promotes conservative estimates:

h(S) = ||X−
∑
j

Sj ||2

Auxiliary function

. Auxiliary parameters Y such that
∑
j Yj = X.

. Positive weights Λj such that
∑
j λj,f,t = 1.

. Then the following is an auxiliary function for h:

h+(S,Y) =
∑
j,f,t

|yj,f,t − sj,f,t|2

λj,f,t

Auxiliary parameters update: Yj = Sj + Λj � (X−
∑
k Sk)

. Defines a projector Pmix onto the subspace of matrices complying

with the mixing constraint.

+

Mixing
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Consistency constraint

Loss function that promotes consistent estimates:

i(S) =
∑
j

||Sj − G(Sj)||2 with G = STFT ◦ iSTFT

Auxiliary function

. G(Sj) is the closest consistent matrix to Sj .

. Then i+(S,Z) =
∑
j ||Sj − Zj ||2 (where Zj ∈ Im(STFT)) is an

auxiliary function for i.

Auxiliary parameters update: Zj = G(Sj)

. Defines a projector Pcons onto the subspace of consistent matrices.

iSTFT

STFT

Consistency
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Magnitude constraint

Loss function that ensures the estimates’ magnitudes remain close to

the target value Vj estimated beforehand (e.g., using a DNN):

m(S) =
∑
j

|||Sj | −Vj ||2

Auxiliary function

. Auxiliary parameters U such that |Uj | = Vj .

. m+(S,Z) =
∑
j ||Sj −Uj ||2 is an auxiliary function for m.

Auxiliary parameters update: Uj =
Sj
|Sj |
�Vj

. Defines a projector Pmag onto the subspace of matrices whose

magnitude equals the target value.

Magnitude

9



Magnitude constraint

Loss function that ensures the estimates’ magnitudes remain close to

the target value Vj estimated beforehand (e.g., using a DNN):

m(S) =
∑
j

|||Sj | −Vj ||2

Auxiliary function

. Auxiliary parameters U such that |Uj | = Vj .

. m+(S,Z) =
∑
j ||Sj −Uj ||2 is an auxiliary function for m.

Auxiliary parameters update: Uj =
Sj
|Sj |
�Vj

. Defines a projector Pmag onto the subspace of matrices whose

magnitude equals the target value.

Magnitude

9



Magnitude constraint

Loss function that ensures the estimates’ magnitudes remain close to

the target value Vj estimated beforehand (e.g., using a DNN):

m(S) =
∑
j

|||Sj | −Vj ||2

Auxiliary function

. Auxiliary parameters U such that |Uj | = Vj .

. m+(S,Z) =
∑
j ||Sj −Uj ||2 is an auxiliary function for m.

Auxiliary parameters update: Uj =
Sj
|Sj |
�Vj

. Defines a projector Pmag onto the subspace of matrices whose

magnitude equals the target value.

Magnitude

9



Magnitude constraint

Loss function that ensures the estimates’ magnitudes remain close to

the target value Vj estimated beforehand (e.g., using a DNN):

m(S) =
∑
j

|||Sj | −Vj ||2

Auxiliary function

. Auxiliary parameters U such that |Uj | = Vj .

. m+(S,Z) =
∑
j ||Sj −Uj ||2 is an auxiliary function for m.

Auxiliary parameters update: Uj =
Sj
|Sj |
�Vj

. Defines a projector Pmag onto the subspace of matrices whose

magnitude equals the target value.

Magnitude

9



Algorithm derivation example: problem setting

Main problem: optimize the mixing objective + soft consistency penalty + hard magnitude constraint

(call that Mix+Incons hardMag).

min
S
h(S) + σi(S) such that |Sj | = Vj

Using our auxiliary function framework, this rewrites:

such that


|Sj | = Vj

. Auxiliary parameters updates are already known.

. So let’s focus on the update on S.

10



Algorithm derivation example: problem setting

Main problem: optimize the mixing objective + soft consistency penalty + hard magnitude constraint

(call that Mix+Incons hardMag).

min
S
h(S) + σi(S) such that |Sj | = Vj

Using our auxiliary function framework, this rewrites:

min
S,Y,Z

h+(S,Y) + σi+(S,Z) such that


|Sj | = Vj∑
j

Yj = X

Zj ∈ Im(STFT)

. Auxiliary parameters updates are already known.

. So let’s focus on the update on S.

10



Algorithm derivation example: problem setting

Main problem: optimize the mixing objective + soft consistency penalty + hard magnitude constraint

(call that Mix+Incons hardMag).

min
S
h(S) + σi(S) such that |Sj | = Vj

Using our auxiliary function framework, this rewrites:

min
S,Y,Z

h+(S,Y) + σi+(S,Z) such that


|Sj | = Vj∑
j

Yj = X

Zj ∈ Im(STFT)

. Auxiliary parameters updates (Y and Z) are already known.

. So let’s focus on the update on S.

10



Algorithm derivation example: problem setting

Main problem: optimize the mixing objective + soft consistency penalty + hard magnitude constraint

(call that Mix+Incons hardMag).

min
S
h(S) + σi(S) such that |Sj | = Vj

Using our auxiliary function framework, this rewrites:

min
S,Y,Z

h+(S,Y) + σi+(S,Z) such that


|Sj | = Vj∑
j

Yj = X

Zj ∈ Im(STFT)

. Auxiliary parameters updates (Y and Z) are already known.

. So let’s focus on the update on S.
10



Algorithm derivation example: update

New problem

. Incorporate the hard constraint using the method of Lagrange multipliers.

. Find a critical point for:

h+(S,Y) + σi+(S,Z) +
∑
j,f,t

δj,f,t(|sj,f,t|2 − v2j,f,t)

Update

. Set the partial derivative with respect to S at 0 and solve:

Sj =
Yj + σΛj � Zj
|Yj + σΛj � Zj |

�Vj

. Generalizes particular cases from the literature (σ = 0 and σ = +∞).
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Algorithm derivation example: illustration

Compact update rule using the projectors: Pmag (Pmix(S) + σΛ� Pcons(S))
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Other algorithms

. Check the paper for all problem formulations / update schemes...

. ... and the supplementary material for all the mathematical derivation.

MISI* Pmix(Pmag(Pcons(S)))

Mix+Incons
1

1 + σΛ
� (Pmix(S) + σΛ� Pcons(S))

Mix+Incons hardMag Pmag(Pmix(S) + σΛ� Pcons(S))

Incons hardMix Pmix(Pcons(S))

Mag+Incons hardMix Pmix

(
1

1 + σ
(Pmag(S) + σPcons(S))

)
* Multiple Input Spectrogram Inversion

Mixing

Magnitude

Some problem formulations / algorithms are not reported: ill-posed (conflicting constraints),

impractical (2 redundant soft penalties), updates that only affect magnitude...
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Experiments



Protocol

Task: speech enhancement (J = 2)

. Clean speech (VoiceBank) + noise (DEMAND: living room, bus, and public square noises).

. Mixtures at various input SNR (iSNR): −10, 0, and 10 dB.

. 100 mixtures (50/50 for validation/test).

Magnitude estimation

. Open-Unmix: a freely available BLSTM network (trained on different speakers and noises).

. In practice, magnitudes are estimated more accurately as the iSNR increases.

Methods

. Initialization with an amplitude mask (AM) = estimated magnitude + mixture’s phase.

. MISI is a widely-used baseline algorithm.

. The consistency weight σ and number of iterations are tuned on the validation set.

Separation quality measured with the speech signal-to-distortion ratio (SDR).
14



Validation results

iSNR=10 dB
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Consistency weight

. SDR peak: adjusting σ maximizes the performance.

. Our general framework > particular cases (σ = 0 or +∞) corresponding to existing algorithms.

Iterations

. MISI reaches its peak performance after very few iterations.

. Alternative algorithms are more stable / easier to tune.

. For a fair comparison, use an algorithm-specific number of iterations (often overlooked).
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Test results

iSNR= 10 dB iSNR= 0 dB iSNR= −10 dB

AM 18.7 13.5 7.7

MISI 19.6 14.1 7.7

Mag+Incons hardMix 19.6 14.1 7.7

Incons hardMix 19.6 13.9 7.5

Mix+Incons hardMag 18.7 13.8

Mix+Incons 19.3 13.7 8.1

. Mag+Incons hardMix: interesting alternative to MISI (same performance, stable over iterations).

. Incons hardMix: the performance degrades as the iSNR decreases.

. Mix+Incons hardMag > MISI at low iSNR, but not at high iSNR ( 6= from previous studies:

optimized number of iterations and different magnitude estimation technique).

. Mix+Incons: mitigates the SDR drop at high iSNR + boosts the performance at low iSNR.
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Conclusion

Main contribution

A general framework for deriving spectrogram inversion algorithms for source separation.

. Encompasses many existing techniques from the literature.

. Some novel algorithms are interesting alternatives.

https://github.com/magronp/spectrogram-inversion

Future research / work in progress:

. Unfold these algorithms into neural networks for time-domain separation.

. Combine them with deep phase priors.

. Application to music / speech separation.
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