Spectrogram Inversion for Audio Source Separation via Consistency, Mixing, and Magnitude Constraints

Paul Magron, Tuomas Virtanen

Université de Lorraine, CNRS, Inria, LORIA, Nancy, France

Introduction

Audio source separation

\triangleright Audio signals are composed of several constitutive sounds: multiple speakers, background noise, domestic sounds, musical instruments...

Audio source separation

\triangleright Audio signals are composed of several constitutive sounds: multiple speakers, background noise, domestic sounds, musical instruments...

Source separation $=$ recovering the sources from the mixture.
\triangleright Augmented mixing (from mono to stereo).
\triangleright An important preprocessing for many analysis tasks (speech recognition, melody extraction...).

Audio source separation

\triangleright Audio signals are composed of several constitutive sounds: multiple speakers, background noise, domestic sounds, musical instruments...

Source separation $=$ recovering the sources from the mixture.
\triangleright Augmented mixing (from mono to stereo).
\triangleright An important preprocessing for many analysis tasks (speech recognition, melody extraction...).

Framework

\triangleright Monaural signals.
\triangleright Short-time Fourier transform (STFT)-domain separation.
\triangleright Mixture model: $\mathbf{X}=\sum_{j=1}^{J} \mathbf{S}_{j}$.

Typical separation pipeline

Nonnegative time-frequency (TF) masking:

Typical separation pipeline

Nonnegative time-frequency (TF) masking:

\triangleright A nonnegative representation is processed (e.g., magnitude or power spectrogram).

Typical separation pipeline

Nonnegative time-frequency (TF) masking:

\triangleright A nonnegative representation is processed (e.g., magnitude or power spectrogram).
\triangleright The separator is a deep neural network, trained using a (large) dataset with isolated sources.

Typical separation pipeline

Nonnegative time-frequency (TF) masking:

\triangleright A nonnegative representation is processed (e.g., magnitude or power spectrogram).
\triangleright The separator is a deep neural network, trained using a (large) dataset with isolated sources.
\triangleright The mixture's phase is assigned to each source using a Wiener-like filter or masking process.

Typical separation pipeline

Nonnegative time-frequency (TF) masking:

\triangleright A nonnegative representation is processed (e.g., magnitude or power spectrogram).
\triangleright The separator is a deep neural network, trained using a (large) dataset with isolated sources.
\triangleright The mixture's phase is assigned to each source using a Wiener-like filter or masking process. x Issues in sound quality when sources overlap in the TF domain.

Phase recovery for source separation

Phase recovery for source separation

Remark: what about current (complex-valued / time-domain) approaches?

Phase recovery for source separation

Remark: what about current (complex-valued / time-domain) approaches?
\checkmark State-of-the-art results, alleviate the phase issue.

Phase recovery for source separation

Remark: what about current (complex-valued / time-domain) approaches?
\checkmark State-of-the-art results, alleviate the phase issue.
x Larger models (more costly), less interpretable, lack robustness.

Phase recovery for source separation

Remark: what about current (complex-valued / time-domain) approaches?
\checkmark State-of-the-art results, alleviate the phase issue.
x Larger models (more costly), less interpretable, lack robustness.

Optimization-based algorithms

\triangleright Preserves the magnitude/phase structure.
\triangleright Allow for time-domain training through deep unfolding.
\triangleright Can be combined with deep phase priors as initialization.

Spectrogram inversion algorithms

Key ingredients to derive such algorithms:
\triangleright Important properties in the STFT domain.
\triangleright Hard constraints vs. soft penalties.
\triangleright Optimization strategy.

Spectrogram inversion algorithms

Key ingredients to derive such algorithms:
\triangleright Important properties in the STFT domain.
\triangleright Hard constraints vs. soft penalties.
\triangleright Optimization strategy.

Problem

\triangleright Many algorithms in the literature!
\triangleright Which formulation is the most appropriate?

Spectrogram inversion algorithms

Key ingredients to derive such algorithms:
\triangleright Important properties in the STFT domain.
\triangleright Hard constraints vs. soft penalties.
\triangleright Optimization strategy.

Problem

\triangleright Many algorithms in the literature!
\triangleright Which formulation is the most appropriate?

Mixing

[Wisdom, 2019]
[Wisdom, 2019]
[Wang, 2019]
[Gunawan, 2010]
[Wisdom, 2019]
[Le Roux, 2013]
Consistency
unawan, 2010]

Magnitude

Proposal

A general framework for deriving spectrogram inversion algorithms based on these STFT constraints.

Proposed framework

Overview

Proposed framework

\triangleright For each property/objective/constraint, define a loss function (and an auxiliary function).
\triangleright Combine them (soft penalties / hard constraints) to formulate optimization problems.
\triangleright Derive algorithms that alternate projections on the corresponding constraints subspaces.

Overview

Proposed framework

\triangleright For each property/objective/constraint, define a loss function (and an auxiliary function).
\triangleright Combine them (soft penalties / hard constraints) to formulate optimization problems.
\triangleright Derive algorithms that alternate projections on the corresponding constraints subspaces.

Auxiliary function method

\triangleright Considering minimization of ϕ, construct ϕ^{+}such that:

$$
\phi(\theta)=\min _{\tilde{\theta}} \phi^{+}(\theta, \tilde{\theta}) .
$$

$\triangleright \phi$ is non-increasing when minimizing ϕ^{+}with respect to θ and $\tilde{\theta}$ alternately.
\checkmark Convergence, successfully used in audio, no hyperparameter to tune.

STFT-domain constraints

\triangleright Mixing: the estimates should be conservative $=$ sum up to the mixture, such that there is no creation/destruction of energy.

STFT-domain constraints

\triangleright Mixing: the estimates should be conservative $=$ sum up to the mixture, such that there is no creation/destruction of energy.
\triangleright Consistency: the estimates (=complex-valued matrices) should be the STFT of time-domain signals.

STFT-domain constraints

\triangleright Mixing: the estimates should be conservative $=$ sum up to the mixture, such that there is no creation/destruction of energy.
\triangleright Consistency: the estimates (=complex-valued matrices) should be the STFT of time-domain signals.
\triangleright Magnitude match: the estimates' magnitude should remain close to the output of the DNN computed beforehand.

Mixing constraint

Loss function that promotes conservative estimates:

$$
\text { Complex-valued matrices } \mathbb{C}^{F \times T}
$$

$$
h(\mathbf{S})=\left\|\mathbf{X}-\sum_{j} \mathbf{S}_{j}\right\|^{2}
$$

Mixing constraint

Loss function that promotes conservative estimates:

$$
h(\mathbf{S})=\left\|\mathbf{X}-\sum_{j} \mathbf{S}_{j}\right\|^{2}
$$

Auxiliary function

\triangleright Auxiliary parameters \mathbf{Y} such that $\sum_{j} \mathbf{Y}_{j}=\mathbf{X}$.
\triangleright Positive weights $\boldsymbol{\Lambda}_{j}$ such that $\sum_{j} \lambda_{j, f, t}=1$.
\triangleright Then the following is an auxiliary function for h :

$$
h^{+}(\mathbf{S}, \mathbf{Y})=\sum_{j, f, t} \frac{\left|y_{j, f, t}-s_{j, f, t}\right|^{2}}{\lambda_{j, f, t}}
$$

Mixing constraint

Loss function that promotes conservative estimates:

$$
h(\mathbf{S})=\left\|\mathbf{X}-\sum_{j} \mathbf{S}_{j}\right\|^{2}
$$

Auxiliary function

\triangleright Auxiliary parameters \mathbf{Y} such that $\sum_{j} \mathbf{Y}_{j}=\mathbf{X}$.
\triangleright Positive weights $\boldsymbol{\Lambda}_{j}$ such that $\sum_{j} \lambda_{j, f, t}=1$.
\triangleright Then the following is an auxiliary function for h :

$$
h^{+}(\mathbf{S}, \mathbf{Y})=\sum_{j, f, t} \frac{\left|y_{j, f, t}-s_{j, f, t}\right|^{2}}{\lambda_{j, f, t}}
$$

Auxiliary parameters update: $\mathbf{Y}_{j}=\mathbf{S}_{j}+\boldsymbol{\Lambda}_{j} \odot\left(\mathbf{X}-\sum_{k} \mathbf{S}_{k}\right)$

Mixing constraint

Loss function that promotes conservative estimates:

$$
h(\mathbf{S})=\left\|\mathbf{X}-\sum_{j} \mathbf{S}_{j}\right\|^{2}
$$

Auxiliary function

\triangleright Auxiliary parameters \mathbf{Y} such that $\sum_{j} \mathbf{Y}_{j}=\mathbf{X}$.
\triangleright Positive weights $\boldsymbol{\Lambda}_{j}$ such that $\sum_{j} \lambda_{j, f, t}=1$.
\triangleright Then the following is an auxiliary function for h :

$$
h^{+}(\mathbf{S}, \mathbf{Y})=\sum_{j, f, t} \frac{\left|y_{j, f, t}-s_{j, f, t}\right|^{2}}{\lambda_{j, f, t}}
$$

Auxiliary parameters update: $\mathbf{Y}_{j}=\mathbf{S}_{j}+\boldsymbol{\Lambda}_{j} \odot\left(\mathbf{X}-\sum_{k} \mathbf{S}_{k}\right)$
\triangleright Defines a projector $\mathcal{P}_{\text {mix }}$ onto the subspace of matrices complying with the mixing constraint.

Consistency constraint

Complex-valued matrices $\mathbb{C}^{F \times T}$

Loss function that promotes consistent estimates:

$$
i(\mathbf{S})=\sum_{j}\left\|\mathbf{S}_{j}-\mathcal{G}\left(\mathbf{S}_{j}\right)\right\|^{2} \text { with } \mathcal{G}=\text { STFT } \circ \text { iSTFT }
$$

Consistency constraint

Loss function that promotes consistent estimates:

$$
i(\mathbf{S})=\sum_{j}\left\|\mathbf{S}_{j}-\mathcal{G}\left(\mathbf{S}_{j}\right)\right\|^{2} \text { with } \mathcal{G}=\mathrm{STFT} \circ \text { iSTFT }
$$

Auxiliary function

$\triangleright \mathcal{G}\left(\mathbf{S}_{j}\right)$ is the closest consistent matrix to \mathbf{S}_{j}.
\triangleright Then $i^{+}(\mathbf{S}, \mathbf{Z})=\sum_{j}\left\|\mathbf{S}_{j}-\mathbf{Z}_{j}\right\|^{2}\left(\right.$ where $\left.\mathbf{Z}_{j} \in \operatorname{Im}(\mathrm{STFT})\right)$ is an auxiliary function for i.

Consistency constraint

Loss function that promotes consistent estimates:

$$
i(\mathbf{S})=\sum_{j}\left\|\mathbf{S}_{j}-\mathcal{G}\left(\mathbf{S}_{j}\right)\right\|^{2} \text { with } \mathcal{G}=\mathrm{STFT} \circ \text { iSTFT }
$$

Auxiliary function

$\triangleright \mathcal{G}\left(\mathbf{S}_{j}\right)$ is the closest consistent matrix to \mathbf{S}_{j}.
\triangleright Then $i^{+}(\mathbf{S}, \mathbf{Z})=\sum_{j}\left\|\mathbf{S}_{j}-\mathbf{Z}_{j}\right\|^{2}\left(\right.$ where $\left.\mathbf{Z}_{j} \in \operatorname{Im}(\mathrm{STFT})\right)$ is an auxiliary function for i.

Auxiliary parameters update: $\mathbf{Z}_{j}=\mathcal{G}\left(\mathbf{S}_{j}\right)$

Consistency constraint

Loss function that promotes consistent estimates:

$$
i(\mathbf{S})=\sum_{j}\left\|\mathbf{S}_{j}-\mathcal{G}\left(\mathbf{S}_{j}\right)\right\|^{2} \text { with } \mathcal{G}=\mathrm{STFT} \circ \text { iSTFT }
$$

Auxiliary function

$\triangleright \mathcal{G}\left(\mathbf{S}_{j}\right)$ is the closest consistent matrix to \mathbf{S}_{j}.
\triangleright Then $i^{+}(\mathbf{S}, \mathbf{Z})=\sum_{j}\left\|\mathbf{S}_{j}-\mathbf{Z}_{j}\right\|^{2}\left(\right.$ where $\left.\mathbf{Z}_{j} \in \operatorname{Im}(\mathrm{STFT})\right)$ is an auxiliary function for i.

Auxiliary parameters update: $\mathbf{Z}_{j}=\mathcal{G}\left(\mathbf{S}_{j}\right)$

\triangleright Defines a projector $\mathcal{P}_{\text {cons }}$ onto the subspace of consistent matrices.

Magnitude constraint

Complex-valued matrices $\mathbb{C}^{F \times T}$

Loss function that ensures the estimates' magnitudes remain close to the target value \mathbf{V}_{j} estimated beforehand (e.g., using a DNN):

$$
m(\mathbf{S})=\sum_{j}\left\|\left|\mathbf{S}_{j}\right|-\mathbf{V}_{j}\right\|^{2}
$$

Magnitude constraint

Loss function that ensures the estimates' magnitudes remain close to the target value \mathbf{V}_{j} estimated beforehand (e.g., using a DNN):

$$
m(\mathbf{S})=\sum_{j}\left\|\left|\mathbf{S}_{j}\right|-\mathbf{V}_{j}\right\|^{2}
$$

Auxiliary function

\triangleright Auxiliary parameters \mathbf{U} such that $\left|\mathbf{U}_{j}\right|=\mathbf{V}_{j}$.
$\triangleright m^{+}(\mathbf{S}, \mathbf{Z})=\sum_{j}\left\|\mathbf{S}_{j}-\mathbf{U}_{j}\right\|^{2}$ is an auxiliary function for m.

Magnitude constraint

Loss function that ensures the estimates' magnitudes remain close to the target value \mathbf{V}_{j} estimated beforehand (e.g., using a DNN):

$$
m(\mathbf{S})=\sum_{j}\left\|\left|\mathbf{S}_{j}\right|-\mathbf{V}_{j}\right\|^{2}
$$

Auxiliary function

\triangleright Auxiliary parameters \mathbf{U} such that $\left|\mathbf{U}_{j}\right|=\mathbf{V}_{j}$.
$\triangleright m^{+}(\mathbf{S}, \mathbf{Z})=\sum_{j}\left\|\mathbf{S}_{j}-\mathbf{U}_{j}\right\|^{2}$ is an auxiliary function for m.

Auxiliary parameters update: $\mathbf{U}_{j}=\frac{\mathbf{S}_{j}}{\left|\mathbf{S}_{j}\right|} \odot \mathbf{V}_{j}$

Magnitude constraint

Loss function that ensures the estimates' magnitudes remain close to the target value \mathbf{V}_{j} estimated beforehand (e.g., using a DNN):

$$
m(\mathbf{S})=\sum_{j}\left\|\left|\mathbf{S}_{j}\right|-\mathbf{V}_{j}\right\|^{2}
$$

Auxiliary function

\triangleright Auxiliary parameters \mathbf{U} such that $\left|\mathbf{U}_{j}\right|=\mathbf{V}_{j}$.
$\triangleright m^{+}(\mathbf{S}, \mathbf{Z})=\sum_{j}\left\|\mathbf{S}_{j}-\mathbf{U}_{j}\right\|^{2}$ is an auxiliary function for m.
Auxiliary parameters update: $\mathbf{U}_{j}=\frac{\mathbf{S}_{j}}{\left|\mathbf{S}_{j}\right|} \odot \mathbf{V}_{j}$

\triangleright Defines a projector $\mathcal{P}_{\text {mag }}$ onto the subspace of matrices whose magnitude equals the target value.

Algorithm derivation example: problem setting

Main problem: optimize the mixing objective + soft consistency penalty + hard magnitude constraint (call that Mix+Incons_hardMag).

$$
\min _{\mathbf{S}} h(\mathbf{S})+\sigma i(\mathbf{S}) \text { such that }\left|\mathbf{S}_{j}\right|=\mathbf{V}_{j}
$$

Algorithm derivation example: problem setting

Main problem: optimize the mixing objective + soft consistency penalty + hard magnitude constraint (call that Mix+Incons_hardMag).

$$
\min _{\mathbf{S}} h(\mathbf{S})+\sigma i(\mathbf{S}) \text { such that }\left|\mathbf{S}_{j}\right|=\mathbf{V}_{j}
$$

Using our auxiliary function framework, this rewrites:

$$
\min _{\mathbf{S}, \mathbf{Y}, \mathbf{Z}} h^{+}(\mathbf{S}, \mathbf{Y})+\sigma i^{+}(\mathbf{S}, \mathbf{Z}) \text { such that }\left\{\begin{array}{l}
\left|\mathbf{S}_{j}\right|=\mathbf{V}_{j} \\
\sum_{j} \mathbf{Y}_{j}=\mathbf{X} \\
\mathbf{Z}_{j} \in \operatorname{Im}(\mathrm{STFT})
\end{array}\right.
$$

Algorithm derivation example: problem setting

Main problem: optimize the mixing objective + soft consistency penalty + hard magnitude constraint (call that Mix+Incons_hardMag).

$$
\min _{\mathbf{S}} h(\mathbf{S})+\sigma i(\mathbf{S}) \text { such that }\left|\mathbf{S}_{j}\right|=\mathbf{V}_{j}
$$

Using our auxiliary function framework, this rewrites:

$$
\min _{\mathbf{S}, \mathbf{Y}, \mathbf{Z}} h^{+}(\mathbf{S}, \mathbf{Y})+\sigma i^{+}(\mathbf{S}, \mathbf{Z}) \text { such that }\left\{\begin{array}{l}
\left|\mathbf{S}_{j}\right|=\mathbf{V}_{j} \\
\sum_{j} \mathbf{Y}_{j}=\mathbf{X} \\
\mathbf{Z}_{j} \in \operatorname{Im}(\mathbf{S T F T})
\end{array}\right.
$$

\triangleright Auxiliary parameters updates (\mathbf{Y} and \mathbf{Z}) are already known.

Algorithm derivation example: problem setting

Main problem: optimize the mixing objective + soft consistency penalty + hard magnitude constraint (call that Mix+Incons_hardMag).

$$
\min _{\mathbf{S}} h(\mathbf{S})+\sigma i(\mathbf{S}) \text { such that }\left|\mathbf{S}_{j}\right|=\mathbf{V}_{j}
$$

Using our auxiliary function framework, this rewrites:

$$
\min _{\mathbf{S}, \mathbf{Y}, \mathbf{Z}} h^{+}(\mathbf{S}, \mathbf{Y})+\sigma i^{+}(\mathbf{S}, \mathbf{Z}) \text { such that }\left\{\begin{array}{l}
\left|\mathbf{S}_{j}\right|=\mathbf{V}_{j} \\
\sum_{j} \mathbf{Y}_{j}=\mathbf{X} \\
\mathbf{Z}_{j} \in \operatorname{lm}(\mathrm{STFT})
\end{array}\right.
$$

\triangleright Auxiliary parameters updates (\mathbf{Y} and \mathbf{Z}) are already known.
\triangleright So let's focus on the update on \mathbf{S}.

Algorithm derivation example: update

New problem

\triangleright Incorporate the hard constraint using the method of Lagrange multipliers.
\triangleright Find a critical point for:

$$
h^{+}(\mathbf{S}, \mathbf{Y})+\sigma i^{+}(\mathbf{S}, \mathbf{Z})+\sum_{j, f, t} \delta_{j, f, t}\left(\left|s_{j, f, t}\right|^{2}-v_{j, f, t}^{2}\right)
$$

Algorithm derivation example: update

New problem

\triangleright Incorporate the hard constraint using the method of Lagrange multipliers.
\triangleright Find a critical point for:

$$
h^{+}(\mathbf{S}, \mathbf{Y})+\sigma i^{+}(\mathbf{S}, \mathbf{Z})+\sum_{j, f, t} \delta_{j, f, t}\left(\left|s_{j, f, t}\right|^{2}-v_{j, f, t}^{2}\right)
$$

Update

\triangleright Set the partial derivative with respect to \mathbf{S} at 0 and solve:

$$
\mathbf{S}_{j}=\frac{\mathbf{Y}_{j}+\sigma \boldsymbol{\Lambda}_{j} \odot \mathbf{Z}_{j}}{\left|\mathbf{Y}_{j}+\sigma \boldsymbol{\Lambda}_{j} \odot \mathbf{Z}_{j}\right|} \odot \mathbf{V}_{j}
$$

\triangleright Generalizes particular cases from the literature ($\sigma=0$ and $\sigma=+\infty$).

Algorithm derivation example: illustration

Compact update rule using the projectors: $\mathcal{P}_{\text {mag }}\left(\mathcal{P}_{\text {mix }}(\mathbf{S})+\sigma \boldsymbol{\Lambda} \odot \mathcal{P}_{\text {cons }}(\mathbf{S})\right)$

Algorithm derivation example: illustration

Compact update rule using the projectors: $\mathcal{P}_{\text {mag }}\left(\mathcal{P}_{\text {mix }}(\mathbf{S})+\sigma \boldsymbol{\Lambda} \odot \mathcal{P}_{\text {cons }}(\mathbf{S})\right)$

Complex-valued matrices $\mathbb{C}^{F \times T}$

Algorithm derivation example: illustration

Compact update rule using the projectors: $\mathcal{P}_{\text {mag }}\left(\mathcal{P}_{\text {mix }}(\mathbf{S})+\sigma \boldsymbol{\Lambda} \odot \mathcal{P}_{\text {cons }}(\mathbf{S})\right)$

Complex-valued matrices $\mathbb{C}^{F \times T}$

Algorithm derivation example: illustration

Compact update rule using the projectors: $\mathcal{P}_{\text {mag }}\left(\mathcal{P}_{\text {mix }}(\mathbf{S})+\sigma \boldsymbol{\Lambda} \odot \mathcal{P}_{\text {cons }}(\mathbf{S})\right)$

Complex-valued matrices $\mathbb{C}^{F \times T}$

Algorithm derivation example: illustration

Compact update rule using the projectors: $\mathcal{P}_{\text {mag }}\left(\mathcal{P}_{\text {mix }}(\mathbf{S})+\sigma \boldsymbol{\Lambda} \odot \mathcal{P}_{\text {cons }}(\mathbf{S})\right)$

Complex-valued matrices $\mathbb{C}^{F \times T}$

Algorithm derivation example: illustration

Compact update rule using the projectors: $\mathcal{P}_{\text {mag }}\left(\mathcal{P}_{\text {mix }}(\mathbf{S})+\sigma \boldsymbol{\Lambda} \odot \mathcal{P}_{\text {cons }}(\mathbf{S})\right)$

Complex-valued matrices $\mathbb{C}^{F \times T}$

Other algorithms

\triangleright Check the paper for all problem formulations / update schemes...
$\triangleright \ldots$ and the supplementary material for all the mathematical derivation.

Other algorithms

\triangleright Check the paper for all problem formulations / update schemes...
$\triangleright \ldots$ and the supplementary material for all the mathematical derivation.

MISI*	$\mathcal{P}_{\text {mix }}\left(\mathcal{P}_{\text {mag }}\left(\mathcal{P}_{\text {cons }}(\mathbf{S})\right)\right)$
Mix+Incons	$\frac{1}{1+\sigma \boldsymbol{\Lambda}} \odot\left(\mathcal{P}_{\text {mix }}(\mathbf{S})+\sigma \mathbf{\Lambda} \odot \mathcal{P}_{\text {cons }}(\mathbf{S})\right)$
Mix+Incons_hardMag	$\mathcal{P}_{\text {mag }}\left(\mathcal{P}_{\text {mix }}(\mathbf{S})+\sigma \mathbf{\Lambda} \odot \mathcal{P}_{\text {cons }}(\mathbf{S})\right)$
Incons_hardMix	$\mathcal{P}_{\text {mix }}\left(\mathcal{P}_{\text {cons }}(\mathbf{S})\right)$
Mag+Incons_hardMix	$\mathcal{P}_{\text {mix }}\left(\frac{1}{1+\sigma}\left(\mathcal{P}_{\text {mag }}(\mathbf{S})+\sigma \mathcal{P}_{\text {cons }}(\mathbf{S})\right)\right)$

Consistency

* Multiple Input Spectrogram Inversion

Other algorithms

\triangleright Check the paper for all problem formulations / update schemes...
$\triangleright \ldots$ and the supplementary material for all the mathematical derivation.

MISI*	$\mathcal{P}_{\text {mix }}\left(\mathcal{P}_{\text {mag }}\left(\mathcal{P}_{\text {cons }}(\mathbf{S})\right)\right)$
Mix+Incons	$\frac{1}{1+\sigma \mathbf{\Lambda}} \odot\left(\mathcal{P}_{\text {mix }}(\mathbf{S})+\sigma \mathbf{\Lambda} \odot \mathcal{P}_{\text {cons }}(\mathbf{S})\right)$
Mix+Incons_hardMag	$\mathcal{P}_{\text {mag }}\left(\mathcal{P}_{\text {mix }}(\mathbf{S})+\sigma \mathbf{\Lambda} \odot \mathcal{P}_{\text {cons }}(\mathbf{S})\right)$
Incons_hardMix	$\mathcal{P}_{\text {mix }}\left(\mathcal{P}_{\text {cons }}(\mathbf{S})\right)$
Mag+Incons_hardMix	$\mathcal{P}_{\text {mix }}\left(\frac{1}{1+\sigma}\left(\mathcal{P}_{\text {mag }}(\mathbf{S})+\sigma \mathcal{P}_{\text {cons }}(\mathbf{S})\right)\right)$

Consistency

* Multiple Input Spectrogram Inversion

Some problem formulations / algorithms are not reported: ill-posed (conflicting constraints), impractical (2 redundant soft penalties), updates that only affect magnitude...

Experiments

Protocol

Task: speech enhancement ($J=2$)
\triangleright Clean speech (VoiceBank) + noise (DEMAND: living room, bus, and public square noises).
\triangleright Mixtures at various input SNR (iSNR): $-10,0$, and 10 dB .
$\triangleright 100$ mixtures (50/50 for validation/test).

Magnitude estimation

\triangleright Open-Unmix: a freely available BLSTM network (trained on different speakers and noises).
\triangleright In practice, magnitudes are estimated more accurately as the iSNR increases.

Methods

\triangleright Initialization with an amplitude mask $(A M)=$ estimated magnitude + mixture's phase.
\triangleright MISI is a widely-used baseline algorithm.
\triangleright The consistency weight σ and number of iterations are tuned on the validation set.
Separation quality measured with the speech signal-to-distortion ratio (SDR).

Validation results

Consistency weight

\triangleright SDR peak: adjusting σ maximizes the performance.
\triangleright Our general framework $>$ particular cases $(\sigma=0$ or $+\infty)$ corresponding to existing algorithms.

Validation results

Consistency weight

\triangleright SDR peak: adjusting σ maximizes the performance.
\triangleright Our general framework $>$ particular cases $(\sigma=0$ or $+\infty)$ corresponding to existing algorithms.

Iterations

\triangleright MISI reaches its peak performance after very few iterations.
\triangleright Alternative algorithms are more stable / easier to tune.
\triangleright For a fair comparison, use an algorithm-specific number of iterations (often overlooked).

Test results

	iSNR $=10 \mathrm{~dB}$	iSNR $=0 \mathrm{~dB}$	iSNR $=-10 \mathrm{~dB}$
AM	18.7	13.5	7.7
MISI	$\mathbf{1 9 . 6}$	$\mathbf{1 4 . 1}$	7.7

Test results

	iSNR $=10 \mathrm{~dB}$	iSNR $=0 \mathrm{~dB}$	iSNR= -10 dB
AM	18.7	13.5	7.7
MISI	$\mathbf{1 9 . 6}$	$\mathbf{1 4 . 1}$	7.7
Mag+Incons_hardMix	$\mathbf{1 9 . 6}$	$\mathbf{1 4 . 1}$	7.7

\triangleright Mag+Incons_hardMix: interesting alternative to MISI (same performance, stable over iterations).

Test results

	iSNR $=10 \mathrm{~dB}$	iSNR $=0 \mathrm{~dB}$	iSNR $=-10 \mathrm{~dB}$
AM	18.7	13.5	7.7
MISI	$\mathbf{1 9 . 6}$	$\mathbf{1 4 . 1}$	7.7
Mag+Incons_hardMix	$\mathbf{1 9 . 6}$	$\mathbf{1 4 . 1}$	7.7
Incons_hardMix	$\mathbf{1 9 . 6}$	13.9	7.5

\triangleright Mag+Incons_hardMix: interesting alternative to MISI (same performance, stable over iterations).
\triangleright Incons_hardMix: the performance degrades as the iSNR decreases.

Test results

	iSNR $=10 \mathrm{~dB}$	iSNR $=0 \mathrm{~dB}$	iSNR $=-10 \mathrm{~dB}$
AM	18.7	13.5	7.7
MISI	$\mathbf{1 9 . 6}$	$\mathbf{1 4 . 1}$	7.7
Mag+Incons_hardMix	$\mathbf{1 9 . 6}$	$\mathbf{1 4 . 1}$	7.7
Incons_hardMix	$\mathbf{1 9 . 6}$	13.9	7.5
Mix+Incons_hardMag	18.7	13.8	$\mathbf{7 . 9}$

\triangleright Mag+Incons_hardMix: interesting alternative to MISI (same performance, stable over iterations).
\triangleright Incons_hardMix: the performance degrades as the iSNR decreases.
\triangleright Mix+Incons_hardMag $>$ MISI at low iSNR, but not at high iSNR (\neq from previous studies: optimized number of iterations and different magnitude estimation technique).

Test results

	iSNR $=10 \mathrm{~dB}$	iSNR $=0 \mathrm{~dB}$	iSNR= -10 dB
AM	18.7	13.5	7.7
MISI	$\mathbf{1 9 . 6}$	$\mathbf{1 4 . 1}$	7.7
Mag+Incons_hardMix	$\mathbf{1 9 . 6}$	$\mathbf{1 4 . 1}$	7.7
Incons_hardMix	$\mathbf{1 9 . 6}$	13.9	7.5
Mix+Incons_hardMag	18.7	13.8	7.9
Mix+Incons	19.3	13.7	$\mathbf{8 . 1}$

\triangleright Mag+Incons_hardMix: interesting alternative to MISI (same performance, stable over iterations).
\triangleright Incons_hardMix: the performance degrades as the iSNR decreases.
\triangleright Mix+Incons_hardMag $>$ MISI at low iSNR, but not at high iSNR (\neq from previous studies: optimized number of iterations and different magnitude estimation technique).
\triangleright Mix+Incons: mitigates the SDR drop at high iSNR + boosts the performance at low iSNR.

Conclusion

Main contribution

A general framework for deriving spectrogram inversion algorithms for source separation.
\triangleright Encompasses many existing techniques from the literature.
\triangleright Some novel algorithms are interesting alternatives.
(J https://github.com/magronp/spectrogram-inversion

Future research / work in progress:
\triangleright Unfold these algorithms into neural networks for time-domain separation.
\triangleright Combine them with deep phase priors.
\triangleright Application to music / speech separation.

