Spectrogram Inversion for Audio Source Separation via Consistency, Mixing, and Magnitude Constraints

Paul Magron, Tuomas Virtanen

Université de Lorraine, CNRS, Inria, LORIA, Nancy, France

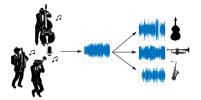
Introduction

▷ Audio signals are composed of several constitutive sounds: multiple speakers, background noise, domestic sounds, musical instruments...

Audio signals are composed of several constitutive sounds: multiple speakers, background noise, domestic sounds, musical instruments...

Source separation = recovering the sources from the mixture.

- ▷ Augmented mixing (from mono to stereo).
- An important preprocessing for many analysis tasks (speech recognition, melody extraction...).



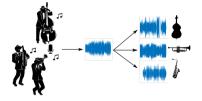
Audio signals are composed of several constitutive sounds: multiple speakers, background noise, domestic sounds, musical instruments...

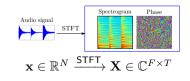
Source separation = recovering the sources from the mixture.

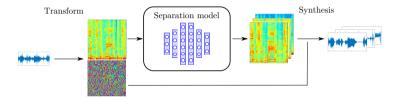
- ▷ Augmented mixing (from mono to stereo).
- An important preprocessing for many analysis tasks (speech recognition, melody extraction...).

Framework

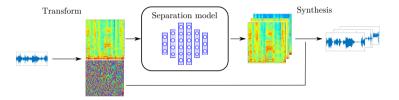
- ▷ Monaural signals.
- ▷ Short-time Fourier transform (STFT)-domain separation.
- \triangleright Mixture model: $\mathbf{X} = \sum_{j=1}^{J} \mathbf{S}_{j}$.



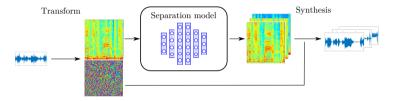




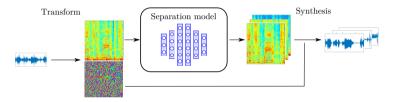
Nonnegative time-frequency (TF) masking:



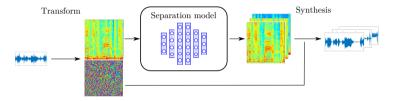
▷ A nonnegative representation is processed (e.g., magnitude or power spectrogram).



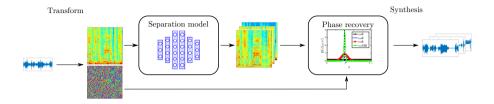
- ▷ A nonnegative representation is processed (e.g., magnitude or power spectrogram).
- ▷ The separator is a deep neural network, trained using a (large) dataset with isolated sources.

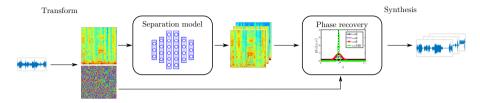


- ▷ A nonnegative representation is processed (e.g., magnitude or power spectrogram).
- ▷ The separator is a deep neural network, trained using a (large) dataset with isolated sources.
- ▷ The mixture's phase is assigned to each source using a Wiener-like filter or masking process.

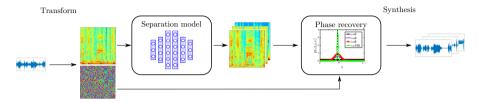


- ▷ A nonnegative representation is processed (e.g., magnitude or power spectrogram).
- ▷ The separator is a deep neural network, trained using a (large) dataset with isolated sources.
- ▷ The mixture's phase is assigned to each source using a Wiener-like filter or masking process.
 - X Issues in sound quality when sources overlap in the TF domain.



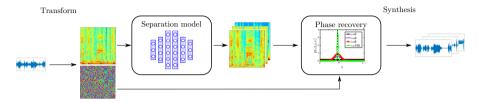


Remark: what about current (complex-valued / time-domain) approaches?



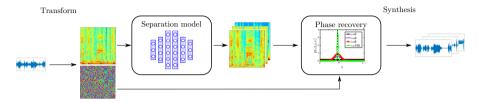
Remark: what about current (complex-valued / time-domain) approaches?

✓ State-of-the-art results, alleviate the phase issue.



Remark: what about current (complex-valued / time-domain) approaches?

- ✓ State-of-the-art results, alleviate the phase issue.
- X Larger models (more costly), less interpretable, lack robustness.



Remark: what about current (complex-valued / time-domain) approaches?

- ✓ State-of-the-art results, alleviate the phase issue.
- X Larger models (more costly), less interpretable, lack robustness.

Optimization-based algorithms

- ▷ Preserves the magnitude/phase structure.
- ▷ Allow for time-domain training through deep unfolding.
- $\triangleright\,$ Can be combined with deep phase priors as initialization.

Key ingredients to derive such algorithms:

- ▷ Important properties in the STFT domain.
- \triangleright Hard constraints vs. soft penalties.
- \triangleright Optimization strategy.

Key ingredients to derive such algorithms:

- $\triangleright~$ Important properties in the STFT domain.
- ▷ Hard constraints vs. soft penalties.
- $\triangleright~$ Optimization strategy.

Problem

- ▷ Many algorithms in the literature!
- ▷ Which formulation is the most appropriate?

Key ingredients to derive such algorithms:

- ▷ Important properties in the STFT domain.
- ▷ Hard constraints vs. soft penalties.
- \triangleright Optimization strategy.

Problem

- Many algorithms in the literature!
- ▷ Which formulation is the most appropriate?

Proposal

A general framework for deriving spectrogram inversion algorithms based on these STFT constraints.

Proposed framework

Proposed framework

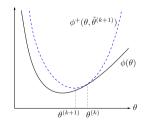
- ▷ For each property/objective/constraint, define a loss function (and an auxiliary function).
- ▷ Combine them (soft penalties / hard constraints) to formulate optimization problems.
- ▷ Derive algorithms that alternate projections on the corresponding constraints subspaces.

Proposed framework

- ▷ For each property/objective/constraint, define a loss function (and an auxiliary function).
- ▷ Combine them (soft penalties / hard constraints) to formulate optimization problems.
- ▷ Derive algorithms that alternate projections on the corresponding constraints subspaces.

Auxiliary function method

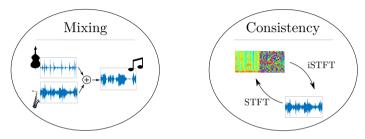
- $\triangleright \text{ Considering minimization of } \phi, \text{ construct } \phi^+ \text{ such that:} \\ \phi(\theta) = \min_{\tilde{\theta}} \phi^+(\theta, \tilde{\theta}).$
- $\triangleright \ \phi$ is non-increasing when minimizing ϕ^+ with respect to θ and $\tilde{\theta}$ alternately.
 - ✓ Convergence, successfully used in audio, no hyperparameter to tune.



STFT-domain constraints

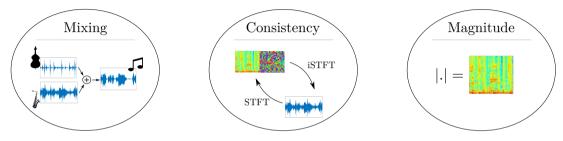
▷ Mixing: the estimates should be *conservative* = sum up to the mixture, such that there is no creation/destruction of energy.

STFT-domain constraints



- ▷ Mixing: the estimates should be *conservative* = sum up to the mixture, such that there is no creation/destruction of energy.
- Consistency: the estimates (=complex-valued matrices) should be the STFT of time-domain signals.

STFT-domain constraints



- ▷ Mixing: the estimates should be *conservative* = sum up to the mixture, such that there is no creation/destruction of energy.
- Consistency: the estimates (=complex-valued matrices) should be the STFT of time-domain signals.
- Magnitude match: the estimates' magnitude should remain close to the output of the DNN computed beforehand.

Loss function that promotes conservative estimates:

$$h(\mathbf{S}) = ||\mathbf{X} - \sum_{j} \mathbf{S}_{j}||^2$$

Loss function that promotes conservative estimates:

$$h(\mathbf{S}) = ||\mathbf{X} - \sum_{j} \mathbf{S}_{j}||^{2}$$

Auxiliary function

- \triangleright Auxiliary parameters **Y** such that $\sum_{j} \mathbf{Y}_{j} = \mathbf{X}$.
- \triangleright Positive weights Λ_j such that $\sum_j \lambda_{j,f,t} = 1$.
- \triangleright Then the following is an auxiliary function for h:

$$h^+(\mathbf{S}, \mathbf{Y}) = \sum_{j, f, t} \frac{|y_{j, f, t} - s_{j, f, t}|^2}{\lambda_{j, f, t}}$$

Loss function that promotes conservative estimates:

$$h(\mathbf{S}) = ||\mathbf{X} - \sum_{j} \mathbf{S}_{j}||^{2}$$

Auxiliary function

- \triangleright Auxiliary parameters **Y** such that $\sum_{j} \mathbf{Y}_{j} = \mathbf{X}$.
- \triangleright Positive weights Λ_j such that $\sum_j \lambda_{j,f,t} = 1$.
- \triangleright Then the following is an auxiliary function for h:

$$h^+(\mathbf{S}, \mathbf{Y}) = \sum_{j, f, t} \frac{|y_{j, f, t} - s_{j, f, t}|^2}{\lambda_{j, f, t}}$$

Auxiliary parameters update: $\mathbf{Y}_j = \mathbf{S}_j + \mathbf{\Lambda}_j \odot (\mathbf{X} - \sum_k \mathbf{S}_k)$

Loss function that promotes conservative estimates:

$$h(\mathbf{S}) = ||\mathbf{X} - \sum_{j} \mathbf{S}_{j}||^{2}$$

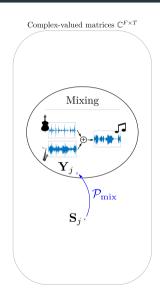
Auxiliary function

- \triangleright Auxiliary parameters **Y** such that $\sum_{j} \mathbf{Y}_{j} = \mathbf{X}$.
- \triangleright Positive weights Λ_j such that $\sum_j \lambda_{j,f,t} = 1$.
- \triangleright Then the following is an auxiliary function for h:

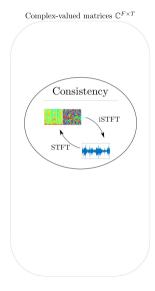
$$h^+(\mathbf{S}, \mathbf{Y}) = \sum_{j, f, t} \frac{|y_{j, f, t} - s_{j, f, t}|^2}{\lambda_{j, f, t}}$$

Auxiliary parameters update: $\mathbf{Y}_j = \mathbf{S}_j + \mathbf{\Lambda}_j \odot (\mathbf{X} - \sum_k \mathbf{S}_k)$

 \triangleright Defines a projector \mathcal{P}_{mix} onto the subspace of matrices complying with the mixing constraint.



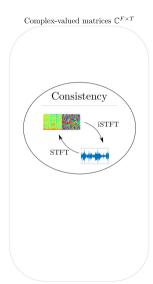
$$i(\mathbf{S}) = \sum_j ||\mathbf{S}_j - \mathcal{G}(\mathbf{S}_j)||^2$$
 with $\mathcal{G} = \mathsf{STFT} \circ \mathsf{iSTFT}$



$$i(\mathbf{S}) = \sum_j ||\mathbf{S}_j - \mathcal{G}(\mathbf{S}_j)||^2$$
 with $\mathcal{G} = \mathsf{STFT} \circ \mathsf{iSTFT}$

Auxiliary function

- $\triangleright \ \mathcal{G}(\mathbf{S}_j)$ is the closest consistent matrix to \mathbf{S}_j .
- ▷ Then $i^+(\mathbf{S}, \mathbf{Z}) = \sum_j ||\mathbf{S}_j \mathbf{Z}_j||^2$ (where $\mathbf{Z}_j \in \mathsf{Im}(\mathsf{STFT})$) is an auxiliary function for i.



$$i(\mathbf{S}) = \sum_j ||\mathbf{S}_j - \mathcal{G}(\mathbf{S}_j)||^2$$
 with $\mathcal{G} = \mathsf{STFT} \circ \mathsf{iSTFT}$

Auxiliary function

- $\triangleright \ \mathcal{G}(\mathbf{S}_j)$ is the closest consistent matrix to \mathbf{S}_j .
- ▷ Then $i^+(\mathbf{S}, \mathbf{Z}) = \sum_j ||\mathbf{S}_j \mathbf{Z}_j||^2$ (where $\mathbf{Z}_j \in \mathsf{Im}(\mathsf{STFT})$) is an auxiliary function for *i*.

Auxiliary parameters update: $\mathbf{Z}_j = \mathcal{G}(\mathbf{S}_j)$

Comp	lex-valued matrices $\mathbb{C}^{F \times T}$
/	Consistency
- / -	\
	istft
	STFT
	MINA

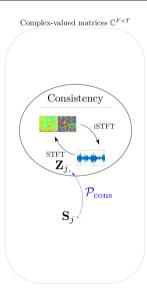
$$i(\mathbf{S}) = \sum_j ||\mathbf{S}_j - \mathcal{G}(\mathbf{S}_j)||^2$$
 with $\mathcal{G} = \mathsf{STFT} \circ \mathsf{iSTFT}$

Auxiliary function

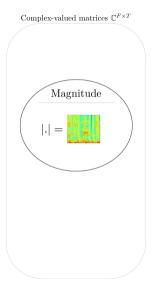
- $\triangleright \ \mathcal{G}(\mathbf{S}_j)$ is the closest consistent matrix to \mathbf{S}_j .
- ▷ Then $i^+(\mathbf{S}, \mathbf{Z}) = \sum_j ||\mathbf{S}_j \mathbf{Z}_j||^2$ (where $\mathbf{Z}_j \in \mathsf{Im}(\mathsf{STFT})$) is an auxiliary function for *i*.

Auxiliary parameters update: $\mathbf{Z}_j = \mathcal{G}(\mathbf{S}_j)$

 \triangleright Defines a projector \mathcal{P}_{cons} onto the subspace of consistent matrices.



$$m(\mathbf{S}) = \sum_{j} |||\mathbf{S}_{j}| - \mathbf{V}_{j}||^{2}$$

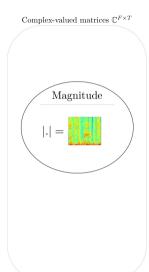


$$m(\mathbf{S}) = \sum_{j} |||\mathbf{S}_{j}| - \mathbf{V}_{j}||^{2}$$

Auxiliary function

 $\triangleright \; \mathsf{Auxiliary} \; \mathsf{parameters} \; \mathbf{U} \; \mathsf{such} \; \mathsf{that} \; |\mathbf{U}_j| = \mathbf{V}_j.$

 $\triangleright m^+(\mathbf{S}, \mathbf{Z}) = \sum_j ||\mathbf{S}_j - \mathbf{U}_j||^2$ is an auxiliary function for m.

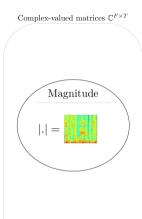


$$m(\mathbf{S}) = \sum_{j} |||\mathbf{S}_{j}| - \mathbf{V}_{j}||^{2}$$

Auxiliary function

▷ Auxiliary parameters U such that $|U_j| = V_j$. ▷ $m^+(\mathbf{S}, \mathbf{Z}) = \sum_j ||\mathbf{S}_j - \mathbf{U}_j||^2$ is an auxiliary function for m.

Auxiliary parameters update: $\mathbf{U}_j = \frac{\mathbf{S}_j}{|\mathbf{S}_j|} \odot \mathbf{V}_j$



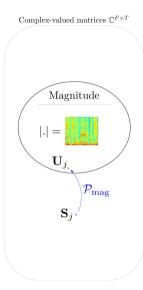
$$m(\mathbf{S}) = \sum_{j} |||\mathbf{S}_{j}| - \mathbf{V}_{j}||^{2}$$

Auxiliary function

▷ Auxiliary parameters U such that $|U_j| = V_j$. ▷ $m^+(\mathbf{S}, \mathbf{Z}) = \sum_j ||\mathbf{S}_j - \mathbf{U}_j||^2$ is an auxiliary function for m.

Auxiliary parameters update: $\mathbf{U}_j = \frac{\mathbf{S}_j}{|\mathbf{S}_j|} \odot \mathbf{V}_j$

 $\triangleright~$ Defines a projector \mathcal{P}_{mag} onto the subspace of matrices whose magnitude equals the target value.



Main problem: optimize the mixing objective + soft consistency penalty + hard magnitude constraint (call that Mix+Incons_hardMag).

$$\min_{\mathbf{S}} h(\mathbf{S}) + \sigma i(\mathbf{S})$$
 such that $|\mathbf{S}_j| = \mathbf{V}_j$

Main problem: optimize the mixing objective + soft consistency penalty + hard magnitude constraint (call that Mix+Incons_hardMag).

$$\min_{\mathbf{S}} h(\mathbf{S}) + \sigma i(\mathbf{S})$$
 such that $|\mathbf{S}_j| = \mathbf{V}_j$

Using our auxiliary function framework, this rewrites:

$$\min_{\mathbf{S},\mathbf{Y},\mathbf{Z}} h^{+}(\mathbf{S},\mathbf{Y}) + \sigma i^{+}(\mathbf{S},\mathbf{Z}) \quad \text{such that} \quad \begin{cases} |\mathbf{S}_{j}| = \mathbf{V}_{j} \\ \sum_{j} \mathbf{Y}_{j} = \mathbf{X} \\ \mathbf{Z}_{j} \in \mathsf{Im}(\mathsf{STFT}) \end{cases}$$

Main problem: optimize the mixing objective + soft consistency penalty + hard magnitude constraint (call that Mix+Incons_hardMag).

$$\min_{\mathbf{S}} h(\mathbf{S}) + \sigma i(\mathbf{S})$$
 such that $|\mathbf{S}_j| = \mathbf{V}_j$

Using our auxiliary function framework, this rewrites:

$$\min_{\mathbf{S},\mathbf{Y},\mathbf{Z}} h^{+}(\mathbf{S},\mathbf{Y}) + \sigma i^{+}(\mathbf{S},\mathbf{Z}) \quad \text{such that} \quad \begin{cases} |\mathbf{S}_{j}| = \mathbf{V}_{j} \\ \sum_{j} \mathbf{Y}_{j} = \mathbf{X} \\ \mathbf{Z}_{j} \in \mathsf{Im}(\mathsf{STFT}) \end{cases}$$

.

 \triangleright Auxiliary parameters updates (**Y** and **Z**) are already known.

Main problem: optimize the mixing objective + soft consistency penalty + hard magnitude constraint (call that Mix+Incons_hardMag).

$$\min_{\mathbf{S}} h(\mathbf{S}) + \sigma i(\mathbf{S})$$
 such that $|\mathbf{S}_j| = \mathbf{V}_j$

Using our auxiliary function framework, this rewrites:

$$\min_{\mathbf{S},\mathbf{Y},\mathbf{Z}} h^+(\mathbf{S},\mathbf{Y}) + \sigma i^+(\mathbf{S},\mathbf{Z}) \quad \text{such that} \quad \begin{cases} |\mathbf{S}_j| = \mathbf{V}_j \\ \sum_j \mathbf{Y}_j = \mathbf{X} \\ \mathbf{Z}_j \in \mathsf{Im}(\mathsf{STFT}) \end{cases}$$

1

 \triangleright Auxiliary parameters updates (Y and Z) are already known.

 \triangleright So let's focus on the update on S.

New problem

- ▷ Incorporate the hard constraint using the method of Lagrange multipliers.
- \triangleright Find a critical point for:

$$h^{+}(\mathbf{S}, \mathbf{Y}) + \sigma i^{+}(\mathbf{S}, \mathbf{Z}) + \sum_{j, f, t} \delta_{j, f, t} (|s_{j, f, t}|^{2} - v_{j, f, t}^{2})$$

New problem

- ▷ Incorporate the hard constraint using the method of Lagrange multipliers.
- \triangleright Find a critical point for:

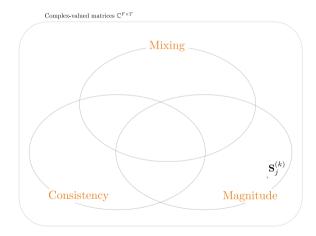
$$h^{+}(\mathbf{S}, \mathbf{Y}) + \sigma i^{+}(\mathbf{S}, \mathbf{Z}) + \sum_{j, f, t} \delta_{j, f, t} (|s_{j, f, t}|^{2} - v_{j, f, t}^{2})$$

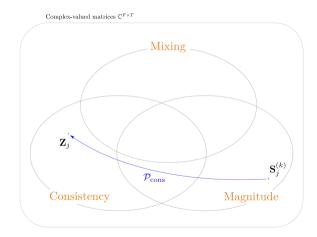
Update

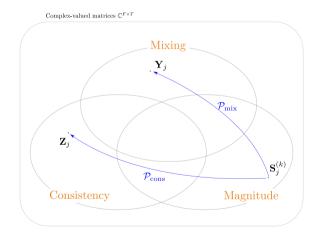
 \triangleright Set the partial derivative with respect to ${\bf S}$ at 0 and solve:

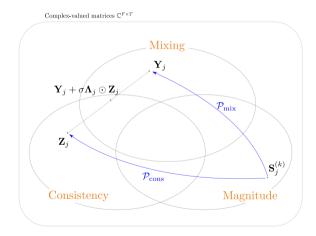
$$\mathbf{S}_j = rac{\mathbf{Y}_j + \sigma \mathbf{\Lambda}_j \odot \mathbf{Z}_j}{|\mathbf{Y}_j + \sigma \mathbf{\Lambda}_j \odot \mathbf{Z}_j|} \odot \mathbf{V}_j$$

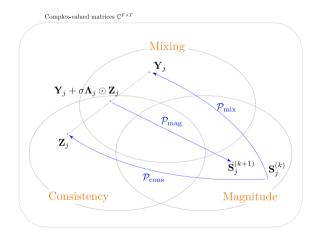
 \triangleright Generalizes particular cases from the literature ($\sigma = 0$ and $\sigma = +\infty$).











Other algorithms

- ▷ Check the paper for all problem formulations / update schemes...
- $\triangleright\ \ldots$ and the supplementary material for all the mathematical derivation.

Other algorithms

▷ Check the paper for all problem formulations / update schemes...

 $\triangleright\ \ldots$ and the supplementary material for all the mathematical derivation.

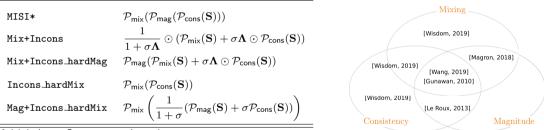
	$\mathcal{P}_{mix}(\mathcal{P}_{mag}(\mathcal{P}_{cons}(\mathbf{S})))$	
Mix+Incons	$rac{1}{1+\sigmaoldsymbol{\Lambda}}\odot\left(\mathcal{P}_{mix}(\mathbf{S})+\sigmaoldsymbol{\Lambda}\odot\mathcal{P}_{cons}(\mathbf{S}) ight)$	[Wisdom, 2019]
Mix+Incons_hardMag	$\mathcal{P}_{mag}(\mathcal{P}_{mix}(\mathbf{S}) + \sigma \mathbf{\Lambda} \odot \mathcal{P}_{cons}(\mathbf{S}))$	[Wisdom, 2019] [Wang, 2019]
Incons_hardMix	$\mathcal{P}_{mix}(\mathcal{P}_{cons}(\mathbf{S}))$	[Gunawan, 2010]
Mag+Incons_hardMix	$\mathcal{P}_{mix}\left(\frac{1}{1+\sigma}(\mathcal{P}_{mag}(\mathbf{S})+\sigma\mathcal{P}_{cons}(\mathbf{S}))\right)$	[Wisdom, 2019] [Le Roux, 2013] Consistency Magnitude

* Multiple Input Spectrogram Inversion

Other algorithms

▷ Check the paper for all problem formulations / update schemes...

 $\triangleright\ ...$ and the supplementary material for all the mathematical derivation.



* Multiple Input Spectrogram Inversion

Some problem formulations / algorithms are not reported: ill-posed (conflicting constraints), impractical (2 redundant soft penalties), updates that only affect magnitude...

Experiments

Protocol

Task: speech enhancement (J = 2)

- ▷ Clean speech (VoiceBank) + noise (DEMAND: living room, bus, and public square noises).
- $\triangleright\,$ Mixtures at various input SNR (iSNR): $-10,\,0,$ and 10 dB.
- $\triangleright~100$ mixtures (50/50 for validation/test).

Magnitude estimation

- ▷ Open-Unmix: a freely available BLSTM network (trained on different speakers and noises).
- ▷ In practice, magnitudes are estimated more accurately as the iSNR increases.

Methods

- \triangleright Initialization with an amplitude mask (AM) = estimated magnitude + mixture's phase.
- > MISI is a widely-used baseline algorithm.
- $\triangleright\,$ The consistency weight σ and number of iterations are tuned on the validation set.

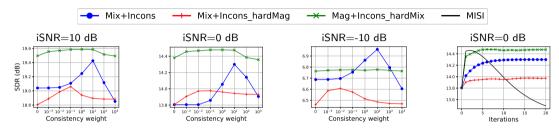
Separation quality measured with the speech signal-to-distortion ratio (SDR).

Validation results

Consistency weight

- \triangleright SDR peak: adjusting σ maximizes the performance.
- \triangleright Our general framework > particular cases ($\sigma = 0$ or $+\infty$) corresponding to existing algorithms.

Validation results



Consistency weight

- \triangleright SDR peak: adjusting σ maximizes the performance.
- \triangleright Our general framework > particular cases ($\sigma = 0$ or $+\infty$) corresponding to existing algorithms.

Iterations

- $\,\triangleright\,$ MISI reaches its peak performance after very few iterations.
- ▷ Alternative algorithms are more stable / easier to tune.
- ▷ For a fair comparison, use an algorithm-specific number of iterations (often overlooked).

Test results

	iSNR=10~dB	iSNR = 0 dB	iSNR = -10 dB
AM	18.7	13.5	7.7
MISI	19.6	14.1	7.7

	iSNR=10~dB	iSNR = 0 dB	iSNR = -10 dB
AM	18.7	13.5	7.7
MISI	19.6	14.1	7.7
Mag+Incons_hardMix	19.6	14.1	7.7

▷ Mag+Incons_hardMix: interesting alternative to MISI (same performance, stable over iterations).

	iSNR=10~dB	iSNR = 0 dB	iSNR = -10 dB
AM	18.7	13.5	7.7
MISI	19.6	14.1	7.7
Mag+Incons_hardMix	19.6	14.1	7.7
Incons_hardMix	19.6	13.9	7.5

▷ Mag+Incons_hardMix: interesting alternative to MISI (same performance, stable over iterations).

▷ Incons_hardMix: the performance degrades as the iSNR decreases.

	iSNR=10~dB	iSNR = 0 dB	iSNR = -10 dB
AM	18.7	13.5	7.7
MISI	19.6	14.1	7.7
Mag+Incons_hardMix	19.6	14.1	7.7
Incons_hardMix	19.6	13.9	7.5
Mix+Incons_hardMag	18.7	13.8	7.9
_			

- ▷ Mag+Incons_hardMix: interesting alternative to MISI (same performance, stable over iterations).
- ▷ Incons_hardMix: the performance degrades as the iSNR decreases.
- ▷ Mix+Incons_hardMag > MISI at low iSNR, but not at high iSNR (≠ from previous studies: optimized number of iterations and different magnitude estimation technique).

	iSNR=10~dB	iSNR = 0 dB	iSNR = -10 dB
AM	18.7	13.5	7.7
MISI	19.6	14.1	7.7
Mag+Incons_hardMix	19.6	14.1	7.7
Incons_hardMix	19.6	13.9	7.5
Mix+Incons_hardMag	18.7	13.8	7.9
Mix+Incons	19.3	13.7	8.1

- ▷ Mag+Incons_hardMix: interesting alternative to MISI (same performance, stable over iterations).
- ▷ Incons_hardMix: the performance degrades as the iSNR decreases.
- ▷ Mix+Incons_hardMag > MISI at low iSNR, but not at high iSNR (≠ from previous studies: optimized number of iterations and different magnitude estimation technique).
- \triangleright Mix+Incons: mitigates the SDR drop at high iSNR + boosts the performance at low iSNR.

Main contribution

A general framework for deriving spectrogram inversion algorithms for source separation.

- ▷ Encompasses many existing techniques from the literature.
- ▷ Some novel algorithms are interesting alternatives.

Thttps://github.com/magronp/spectrogram-inversion

Future research / work in progress:

- ▷ Unfold these algorithms into neural networks for time-domain separation.
- ▷ Combine them with deep phase priors.
- ▷ Application to music / speech separation.