Spectrogram Inversion for Audio Source Separation via
Consistency, Mixing, and Magnitude Constraints

Paul Magron, Tuomas Virtanen

Université de Lorraine, CNRS, Inria, LORIA, Nancy, France

o C
o T r)
EUSIPC02023 &zua/— s



Introduction



Audio sourc aration

> Audio signals are composed of several constitutive sounds: multiple speakers, background noise,
domestic sounds, musical instruments...



Audio source separation

> Audio signals are composed of several constitutive sounds: multiple speakers, background noise,
domestic sounds, musical instruments...

Source separation = recovering the sources from the mixture.
> Augmented mixing (from mono to stereo). M" ‘

. . . [ =
> An important preprocessing for many analysis tasks ﬁﬂgﬁ: M m :

(speech recognition, melody extraction...).



> Audio signals are composed of several constitutive sounds: multiple speakers, background noise,

domestic sounds, musical instruments...

Source separation = recovering the sources from the mixture.
> Augmented mixing (from mono to stereo). M" ‘

. . . [ =
> An important preprocessing for many analysis tasks ﬁﬂgﬁ: M m :

(speech recognition, melody extraction...).

Framework

Audio signal

> Monaural signals. -

> Short-time Fourier transform (STFT)-domain separation.

) N STFT FxT
> Mixture model: X = Z}]:l S;. xeRY — X eC"™
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> A nonnegative representation is processed (e.g., magnitude or power spectrogram).
> The separator is a deep neural network, trained using a (large) dataset with isolated sources.
> The mixture's phase is assigned to each source using a Wiener-like filter or masking process.

X Issues in sound quality when sources overlap in the TF domain.
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Phase recovery for source separation

Transform Synthesis
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Remark: what about current (complex-valued / time-domain) approaches?
v/ State-of-the-art results, alleviate the phase issue. W’“EEEE
X Larger models (more costly), less interpretable, lack robustness.

Optimization-based algorithms

> Preserves the magnitude/phase structure.
> Allow for time-domain training through deep unfolding.

> Can be combined with deep phase priors as initialization.
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Spectrogram inversion algorithms

Key ingredients to derive such algorithms:
. . . Mixing
> Important properties in the STFT domain.
> Hard constraints vs. soft penalties. (fiscom. 20121

> Optimization strategy.

[Magron, 2018]
[Wisdom, 2019]

[Wang, 2019]
Problem [Gunawan, 2010]
. . . [Wisdom, 2019]
> Many algorithms in the literature! (Le Roux, 2013]
. i X . Consistenc Magnitude
> Which formulation is the most appropriate?
Proposal

A general framework for deriving spectrogram inversion algorithms
based on these STFT constraints.
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Proposed framework

> For each property/objective/constraint, define a loss function (and an auxiliary function).
> Combine them (soft penalties / hard constraints) to formulate optimization problems.

> Derive algorithms that alternate projections on the corresponding constraints subspaces.

Auxiliary function method

o+ (0,304

> Considering minimization of @, construct ¢+ such that:
¢(6) = ming 6 (6,0).

> ¢ is non-increasing when minimizing ¢ with respect to 6 and 6

alternately.

v/ Convergence, successfully used in audio, no hyperparameter to tune. e 0
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STFT-domain constraints

Consistency Magnitude
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> Mixing: the estimates should be conservative = sum up to the mixture, such that there is no
creation/destruction of energy.

> Consistency: the estimates (=complex-valued matrices) should be the STFT of time-domain
signals.

> Magnitude match: the estimates’ magnitude should remain close to the output of the DNN
computed beforehand.
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Mixing constraint

LLoss function that promotes conservative estimates:

h(S) = [1X 38,

Complex-valued matrices CF*T

Auxiliary function

Mixing

> Auxiliary parameters Y such that 3, Y; = X.
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> Positive weights A; such that Zj Ajpe =1 /@amf’«

> Then the following is an auxiliary function for h:
e — 85l
h+ S Y — ‘ijf:t 3.f5
( ’ ) Z Aifit
G.fot g f

Auxiliary parameters update: Y; =8; + A; © (X = >, Si)

> Defines a projector Ppix onto the subspace of matrices complying
with the mixing constraint.
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Consistency constraint

Complex-valued matrices CF*7

LLoss function that promotes consistent estimates:

i(8) =Y _|IS; — G(S;)|* with G = STFT o iSTFT
J

Consistency

Auxiliary function
> G(S;) is the closest consistent matrix to S;.
> Then i (S,Z) = 3, 1IS; — Z;||* (where Z; € Im(STFT)) is an :
auxiliary function for 4. \ Peons

Auxiliary parameters update: Z; = G(S;)

> Defines a projector Peons Onto the subspace of consistent matrices.
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Magnitude constraint

Complex-valued matrices CF*T

LLoss function that ensures the estimates’ magnitudes remain close to
the target value V; estimated beforehand (e.g., using a DNN):

m(S):ZIHSjI*VjII2

Magnitude

Auxiliary function
> Auxiliary parameters U such that |U;| = V.

> m*(S,Z) =3, 1|S; — Uj|* is an auxiliary function for m.

\““,Pmag
S; ;
Auxiliary parameters update: Uj; = ﬁ OV, Sj;"
J
> Defines a projector Pmag onto the subspace of matrices whose
magnitude equals the target value.
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Main problem: optimize the mixing objective 4 soft consistency penalty + hard magnitude constraint
(call that Mix+Incons_hardMag).

msin h(S) + 0i(S) such that [S;| = V;

Using our auxiliary function framework, this rewrites:
S;l =V;
Jquin 1¥(S,Y) +0i*(S,Z) such that ZYJ' =X
Y, ;

Z; € Im(STFT)

> Auxiliary parameters updates (Y and Z) are already known.

> So let's focus on the update on S.
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Algorithm derivation example: update

New problem

> Incorporate the hard constraint using the method of Lagrange multipliers.

> Find a critical point for:

h+(87 Y)+ Ui+(S, Z) + Z 6j’f,t(|5j’f,t|2 - ng,f,t)
Jfit

Update

> Set the partial derivative with respect to S at 0 and solve:

Y, +0A,0Z,
S. = J J J OV,
J |Yj+O'A]'@Zj| J

> Generalizes particular cases from the literature (¢ = 0 and o = 4+0).
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Other algorithms

> Check the paper for all problem formulations / update schemes...

> ... and the supplementary material for all the mathematical derivation.

MISIx*

Mix+Incons
Mix+Incons_hardMag
Incons_hardMix

Mag+Incons_hardMix

Pmix (Pmag (Pcons(s)))
O (Pmix(8) + oA © Peons(8))

[Wisdom, 2019]

14+o0A
7Jf11~=lg(7:'mi><(s) +oAO Pcons(s))

Pmix (Pcons(s))

P (H%(Pmag(s) + aPcons(S)))

[Magron, 2018]

[Wisdom, 2019]
[Wang, 2019]

[Gunawan, 2010]

[Wisdom, 2019]
[Le Roux, 2013]

Magnitude

* Multiple Input Spectrogram Inversion

Some problem formulations / algorithms are not reported: ill-posed (conflicting constraints),

impractical (2 redundant soft penalties), updates that only affect magnitude...
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Task: speech enhancement (J = 2)

> Clean speech (VoiceBank) + noise (DEMAND: living room, bus, and public square noises).
> Mixtures at various input SNR (iSNR): —10, 0, and 10 dB.
> 100 mixtures (50/50 for validation/test).

Magnitude estimation

> Open-Unmix: a freely available BLSTM network (trained on different speakers and noises).

> In practice, magnitudes are estimated more accurately as the iSNR increases.
Methods

> Initialization with an amplitude mask (AM) = estimated magnitude + mixture’'s phase.
> MISI is a widely-used baseline algorithm.

> The consistency weight o and number of iterations are tuned on the validation set.

Separation quality measured with the speech signal-to-distortion ratio (SDR).



Validation results

—8— Mix+Incons  —+— Mix+Incons_hardMag —»— Mag+Incons_hardMix

iSNR=10 dB iSNR=0 dB iSNR=-10 dB

U 190 14.0 66
65
188 138
0 10710210 10° 10° 10° 10° 0 100 102 100 100 10° 10 10° 0 10% 102 100 10° 100 100 10°
Consistency weight Consistency weight Consistency weight

Consistency weight

> SDR peak: adjusting o maximizes the performance.
> Our general framework > particular cases (0 = 0 or +00) corresponding to existing algorithms.



Validation results

—8— Mix+Incons  —+— Mix+Incons_hardMag —— Mag+Incons_hardMix  —— MISI
iSNR=10 dB iSNR=0 dB iSNR=-10 dB iSNR=0 dB
196
T~ . ﬁ_-_\\ . s
5 o s
2 142
<2 67 14,0
a
0 190 4.0 6.6 138
o m a6
188 138
0 10710210 10° 10° 10° 10° 0 100 102 100 100 10° 10 10° 0 10% 102 100 10° 100 100 10° 0 5 1o s 20
Consistency weight Consistency weight Consistency weight Iterations

Consistency weight

> SDR peak: adjusting o maximizes the performance.
> Our general framework > particular cases (0 = 0 or +00) corresponding to existing algorithms.

Iterations

> MISI reaches its peak performance after very few iterations.
> Alternative algorithms are more stable / easier to tune.
> For a fair comparison, use an algorithm-specific number of iterations (often overlooked).
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Test results

iSNR=10dB iSNR=0dB iSNR= —10dB

AM 18.7 13.5 7.7
MISI 19.6 14.1 7.7
Mag+Incons_hardMix 19.6 14.1 7.7
Incons_hardMix 19.6 13.9 7.5
Mix+Incons_hardMag 18.7 13.8 7.9
Mix+Incons 19.3 13.7 8.1

> Mag+Incons_hardMix: interesting alternative to MISI (same performance, stable over iterations).
> Incons_hardMix: the performance degrades as the iSNR decreases.

> Mix+Incons_hardMag > MISI at low iSNR, but not at high iSNR (# from previous studies:
optimized number of iterations and different magnitude estimation technique).

> Mix+Incons: mitigates the SDR drop at high iSNR + boosts the performance at low iSNR.



Conclusion

Main contribution ~
A general framework for deriving spectrogram inversion algorithms for source separation.

> Encompasses many existing techniques from the literature.

> Some novel algorithms are interesting alternatives.

9 @®JI https://github.com/magronp/spectrogram-inversion )

Future research / work in progress:

> Unfold these algorithms into neural networks for time-domain separation.
> Combine them with deep phase priors.

> Application to music / speech separation.
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