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Problem formulation



Signal Inpainting

• Restore missing samples from a signal: inpainting [Adler et al., 2012].
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Signal Inpainting

• Restore missing samples from a signal: inpainting [Adler et al., 2012].

• Causes of degradation:
> Packet loss during transmission
> Digitalization of physically degraded media
> Degradation (clipping or impulsive noise).

• The location of the degraded samples is known.

• State of the art:
> Autoregressive models [Janssen et al., 1986]
> Sparse models [Mokry et al., 2019].
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From signal inpainting to phase retrieval

Proposal: inpainting in the Fourier domain, where the problem is divided into two parts:

1. Restoring the Fourier magnitudes

2. Reconstructing the phases to inpaint the signal in time-domain.

Existing techniques to restore the Fourier magnitudes:

• Nonnegative Matrix Fatorization [Févotte et al., 2009]

• Deep Neural Networks [Girin et al., 2019].
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Phase retrieval with inpainting constraint
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We assume the Fourier magnitudes b ∈ RL
+ are observed (oracle or estimated).

Φ ∈ CL×L: Discrete Fourier Transform matrix;

minimize
x∈RL

∥|Φx| − b∥2 s.t. xv = x♮
v
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Difference with the classical phase retrieval problem

Classical phase retrieval problem:

minimize
x∈RL

∥|Φx| − b∥2 s.t. xv = x♮
v

State of the art:

• Alternating minimization [Gerchberg and Saxton, 1972]

• Convex relaxation [Waldspurger et al., 2015]

• Gradient descent [Candès et al., 2015].
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Overview of the methods

Our problem:

minimize
x∈RL

∥|Φx| − b∥2 s.t. xv = x♮
v

Developed methods:

• Alternating minimization (AM)

• Convex relaxation (CR).
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Methods



Alternating minimization: Formulation

minimize
x∈RL

∥|Φx| − b∥2 s.t. xv = x♮
v

Introducing an auxiliary phase variable u, this problem is equivalent to:

minimize
x∈RL,u∈CL

∥Φx− diag(b)u∥2 s.t. xv = x♮
v and |u| = 1.

diag(b): square matrix whose diagonal is b

We reorder x =

[
xv

xv̄

]
and Φ = [Φv,Φv̄]︸ ︷︷ ︸

Column-wise
reordering

.
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Alternating minimization: Algorithm

Initialize xv̄ x←

[
x♮
v

xv̄

]
u← Φx

|Φx|

DFT

X ← diag (b)u

Magnitude
constraint

x← ΦHX

inverse DFT

Support
constraint
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Convex Relaxation: Formulation

Considering the previously reformulated problem:

minimize
x∈RL,u∈CL

∥∥Φvx
♮
v +Φv̄xv̄ − diag(b)u

∥∥2 s.t. |u| = 1,

and introducing:

m̃ := [(Φv̄Φ
H
v̄−I) diag(b) , Φvxv] and ũ =

[
u

1

]
,

we get the equivalent problem:

minimize
ũ∈CL+1

∥m̃ũ∥2 s.t. |ũ| = 1 and ũ[L] = 1
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Convex Relaxation: Lifting

minimize
ũ∈CL+1

∥m̃ũ∥2 s.t. |ũ| = 1 and ũ[L] = 1

We lift and relax the problem as in [Waldspurger et al., 2015], by setting:

Ũ = ũũH, M̃ = m̃Hm̃, Rank
(
Ũ
)
= 1.

The problem becomes:

minimize
Ũ

Tr
(
M̃Ũ

)
s.t. diag

(
Ũ
)
= 1, Ũ ⪰ 0 and Rank

(
Ũ
)
= 1.
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Convex Relaxation: Relaxing the rank constraint

Lifted problem: minimize
Ũ

Tr
(
M̃Ũ

)
s.t. diag

(
Ũ
)
= 1, Ũ ⪰ 0 and Rank

(
Ũ
)
= 1

Original problem: minimize
x∈RL

∥|Φx | − b∥2 s.t. xv = x♮
v

Loss Search space
Lifted problem Convex Non Convex

Original problem Non Convex Convex

→ We relax the rank constraint, and solve the resulting Semi-Definite Program
by Block Coordinate Descent.
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= 1, Ũ ⪰ 0 and Rank

(
Ũ
)
= 1

Original problem: minimize
x∈RL

∥|Φx | − b∥2 s.t. xv = x♮
v

Loss Search space
Lifted problem Convex Non Convex

Original problem Non Convex Convex

→ We relax the rank constraint, and solve the resulting Semi-Definite Program
by Block Coordinate Descent.

11



Combining the CR and AM methods

1. Estimate the solution Ũ of the CR method

2. Compute ũ = the eigenvector associated with the largest eigenvalue (in modulus) of Ũ

3. Extract u =
ũ[: L− 1]

ũ[L]

4. Use ℜ
(
ΦH

v̄ diag (b)u
)

as initialization for xv̄ in AM.
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3. Extract u =
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ũ[L]

4. Use ℜ
(
ΦH

v̄ diag (b)u
)

as initialization for xv̄ in AM.

12



Combining the CR and AM methods

1. Estimate the solution Ũ of the CR method
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Experiments



Protocol

• Data: non-silent excerpts from Librispeech [Panayotov et al., 2015].

• Algorithms stopping criteria:
> AM: 1000 iterations, or maximum loss improvement over the 5 last iterations < 10−10

> CR: 10 iterations.

• Reconstruction score: SER = 10 log10
∥x♮

v̄∥2

∥x♮
v̄−x∗

v̄∥2
, where x∗

v̄ is the prediction.

• Recovery if SER > 20 dB.

• Baseline: sparsity-based method SPAIN [Mokry et al., 2019].
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Influence of the missing fraction onto performance

• 100 excerpts of length L = 1024 samples

> All methods outperform SPAIN: They
correctly leverage the Fourier magnitudes.

> CR provides a solution that is more likely
to converge to a global optimum after
iterations of AM.
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Influence of the signal length and missing fraction
on the CR+AM method performance
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> CR+AM approach performs near the
theoretical optimum when the missing
fraction is lower than 33% and L < 1024.

> Performance decreases when L increases:
Curse of dimensionality and non-convexity.
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Influence of the magnitude noise

• L = 1024 samples, 25% missing fraction.

• Noisy magnitudes
b = max (0,

∣∣Φx♮
∣∣+ n), where n is a

white Gaussian noise whose variance is
adjusted to fit a given magnitude
signal-to-noise ratio (SNR).

> Linear decay in performance on the log-log
plot when SNR falls below 20 dB.

> Our methods outperform SPAIN at high
SNRs only, hence the need to accurately
estimate the magnitudes beforehand.
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Audio example

• Setting:
> Audio split in windows of 64 ms↔ 1024 samples @16 kHz
> 45% missing.

• Results:
> Degraded audio

> Original audio

> Alternating Minimization, initialized with xv̄ ← 0: SER = 18.4 dB

> Convex Relaxation only SER = 15.0 dB

> Convex Relaxation as initialization for Alternated Minimization: SER = 20.7 dB
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Conclusion

• Contributions:
> A new formulation of the signal inpainting problem using Fourier magnitudes
> Two methods based on Alternated Minimization and Convex Relaxation
> Competitive results with state-of-the-art when magnitudes are accurately estimated.

• Perspectives:
> Design magnitude restoration methods and combine them with AM/CR into a complete

signal inpainting framework.
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