Phase recovery for audio demixing: contributions and perspectives

Talk at Neural DSP - Helsinki, August 18th, 2022

Paul Magron, Researcher - INRIA Nancy Grand Est

ATJAV

Ambient sounds

Ambient sounds

Music signals

▷ Audio signals are composed of several constitutive sounds: multiple speakers, background noise, domestic sounds, music instruments...

▷ Audio signals are composed of several constitutive sounds: multiple speakers, background noise, domestic sounds, music instruments...

Source separation or Demixing = recovering the sources from the mixture.

Audio signals are composed of several constitutive sounds: multiple speakers, background noise, domestic sounds, music instruments...

Source separation or Demixing = recovering the sources from the mixture.

- ▷ A useful task *per se* (e.g., augmented mixing from mono to stereo).
- An important preprocessing for many analysis tasks (e.g., polyphonic music transcription).

Audio signals are composed of several constitutive sounds: multiple speakers, background noise, domestic sounds, music instruments...

Source separation or Demixing = recovering the sources from the mixture.

- ▷ A useful task *per se* (e.g., augmented mixing from mono to stereo).
- An important preprocessing for many analysis tasks (e.g., polyphonic music transcription).

An example: Backing track generation

▷ Audio signals are composed of several constitutive sounds: multiple speakers, background noise, domestic sounds, music instruments...

Source separation or Demixing = recovering the sources from the mixture.

- ▷ A useful task *per se* (e.g., augmented mixing from mono to stereo).
- An important preprocessing for many analysis tasks (e.g., polyphonic music transcription).

An example: Backing track generation

- ▷ Consider a mixture 📢
- \triangleright Demix the instruments and create a backing track \P

Setting the stage

▷ The raw material: audio signals.

Setting the stage

▷ The raw material: audio signals.

▷ It's hard to see structure there...

Setting the stage

▷ The raw material: audio signals.

- $\triangleright~$ It's hard to see structure there...
- ▷ We rather transform them into a time-frequency representation, e.g., a spectrogram.

▷ The transform is usually the short-time Fourier transform (STFT).

- ▷ The transform is usually the short-time Fourier transform (STFT).
- ▷ The separator is a deep neural network, trained using a (large) dataset of isolated tracks.

- ▷ The transform is usually the short-time Fourier transform (STFT).
- ▷ The separator is a deep neural network, trained using a (large) dataset of isolated tracks.
- ▷ The synthesis is performed through inverse STFT.

- ▷ The transform is usually the short-time Fourier transform (STFT).
- ▷ The separator is a deep neural network, trained using a (large) dataset of isolated tracks.
- \triangleright The synthesis is performed through inverse STFT.

Nowadays demixing performance:

The phase catch

$$\mathbf{x} \in \mathbb{R}^N \xrightarrow{\mathsf{STFT}} \mathbf{X} \in \mathbb{C}^{F \times T}$$

The STFT produces a spectrogram |X|

The phase catch

$$\mathbf{x} \in \mathbb{R}^N \xrightarrow{\mathsf{STFT}} \mathbf{X} \in \mathbb{C}^{F \times T}$$

The STFT produces a spectrogram |X| ... but also a phase $\angle X$.

The phase catch

$$\mathbf{x} \in \mathbb{R}^N \xrightarrow{\mathsf{STFT}} \mathbf{X} \in \mathbb{C}^{F \times T}$$

The STFT produces a spectrogram |X| ... but also a phase $\angle X$.

The actual demixing pipeline:

 \triangleright The mixture's phase is assigned to each source using a Wiener-like filter.

The potential of phase recovery

X Wiener-like filter: Issues in sound quality when sources *overlap* in the TF domain.

When sources overlap:

$$\begin{split} |X| \neq |S_1| + |S_2| \\ \angle X \neq \angle S_1 \text{ or } \angle S_2 \end{split}$$

The potential of phase recovery

X Wiener-like filter: Issues in sound quality when sources *overlap* in the TF domain.

When sources overlap:

$$\begin{split} |X| \neq |S_1| + |S_2| \\ \angle X \neq \angle S_1 \text{ or } \angle S_2 \end{split}$$

Given the current state of the art:

The potential of phase recovery

X Wiener-like filter: Issues in sound quality when sources *overlap* in the TF domain.

When sources overlap:

 $|X| \neq |S_1| + |S_2|$ $\angle X \neq \angle S_1 \text{ or } \angle S_2$

Given the current state of the art:

Main message

More potential gain in phase recovery than in magnitude estimation.

Phase recovery for audio demixing

Phase recovery for audio demixing

Introduction

Model-based phase recovery

Probabilistic phase modeling

Factorization methods

Conclusion

Model-based phase recovery

Sinusoidal phase model

Consider a mixture of sinusoids: $x(n) = \sum_{p=1}^{P} A_p \sin(2\pi \underbrace{\nu_p}_{n \text{ ormalized frequency}} n + \phi_{0,p}).$

Sinusoidal phase model

Consider a mixture of sinusoids: $x(n) = \sum_{p=1}^{P} A_p \sin(2\pi \underbrace{\nu_p}_{n \neq 0,p} n + \phi_{0,p}).$

The STFT phase follows: $\mu_{f,t} = \mu_{f,t-1} + l\nu_{f,t}$

Sinusoidal phase model

Consider a mixture of sinusoids: $x(n) = \sum_{p=1}^{P} A_p \sin(2\pi \underbrace{\nu_p}_{n \text{ normalized frequency}} n + \phi_{0,p}).$

The STFT phase follows: $\mu_{f,t} = \mu_{f,t-1} + l\nu_{f,t}$

Sinusoidal phase model

Consider a mixture of sinusoids: $x(n) = \sum_{p=1}^{P} A_p \sin(2\pi \underbrace{\nu_p}_{n \text{ normalized frequency}} n + \phi_{0,p}).$

The STFT phase follows: $\mu_{f,t} = \mu_{f,t-1} + l\nu_{f,t}$

- ✓ Accounts for non-stationary signals, suitable for real-time processing.
- X Bad performance for "pure" phase recovery: need to use an additional information.

$$\min_{\{\hat{\mathbf{S}}_j\}} ||\mathbf{X} - \sum_{j=1}^J \hat{\mathbf{S}}_j||^2 \quad \text{s.t.} \quad |\hat{\mathbf{S}}_j| = \mathbf{V}_j$$

$$\min_{\{\hat{\mathbf{S}}_j\}} ||\mathbf{X} - \sum_{j=1}^J \hat{\mathbf{S}}_j||^2 \quad ext{s.t.} \quad |\hat{\mathbf{S}}_j| = \mathbf{V}_j$$

- Obtain an iterative procedure using some optimization framework (e.g., majorization-minimization).
- $\triangleright\,$ Initialize the procedure using the sinusoidal phase model.

$$\min_{\{\hat{\mathbf{S}}_j\}}||\mathbf{X}-\sum_{j=1}^J\hat{\mathbf{S}}_j||^2$$
 s.t. $|\hat{\mathbf{S}}_j|=\mathbf{V}_j$

- ▷ Obtain an iterative procedure using some optimization framework (e.g., majorization-minimization).
- $\triangleright\,$ Initialize the procedure using the sinusoidal phase model.

$$\min_{\{\hat{\mathbf{S}}_j\}} ||\mathbf{X} - \sum_{j=1}^J \hat{\mathbf{S}}_j||^2 \quad ext{s.t.} \quad |\hat{\mathbf{S}}_j| = \mathbf{V}_j$$

- ▷ Obtain an iterative procedure using some optimization framework (e.g., majorization-minimization).
- $\triangleright\,$ Initialize the procedure using the sinusoidal phase model.

$$\min_{\{\hat{\mathbf{S}}_j\}} ||\mathbf{X} - \sum_{j=1}^J \hat{\mathbf{S}}_j||^2 \quad ext{s.t.} \quad |\hat{\mathbf{S}}_j| = \mathbf{V}_j$$

- ▷ Obtain an iterative procedure using some optimization framework (e.g., majorization-minimization).
- $\triangleright\,$ Initialize the procedure using the sinusoidal phase model.

$$\min_{\{\hat{\mathbf{S}}_j\}} ||\mathbf{X} - \sum_{j=1}^J \hat{\mathbf{S}}_j||^2 \quad ext{s.t.} \quad |\hat{\mathbf{S}}_j| = \mathbf{V}_j$$

- ▷ Obtain an iterative procedure using some optimization framework (e.g., majorization-minimization).
- $\triangleright\,$ Initialize the procedure using the sinusoidal phase model.

$$\min_{\{\hat{\mathbf{S}}_j\}}||\mathbf{X}-\sum_{j=1}^J\hat{\mathbf{S}}_j||^2$$
 s.t. $|\hat{\mathbf{S}}_j|=\mathbf{V}_j$

Strategy

- ▷ Obtain an iterative procedure using some optimization framework (e.g., majorization-minimization).
- $\triangleright\,$ Initialize the procedure using the sinusoidal phase model.

✓ Leveraging the sinusoidal phase model reduces interference between source estimates.

Recently: Some attempts at predicting the phase using DNNs.

X Generic architectures which do not account for the particular phase structure.

Recently: Some attempts at predicting the phase using DNNs.

X Generic architectures which do not account for the particular phase structure.

Proposal: Generalize phase models from signal analysis with deep learning.

$$\boldsymbol{\mu}_t = \boldsymbol{\mu}_{t-1} + l\boldsymbol{\nu}_t \quad \rightarrow \quad \boldsymbol{\mu}_t = \underbrace{\mathcal{R}(\boldsymbol{\nu}_t, \boldsymbol{\mu}_{t-1}, \dots, \boldsymbol{\mu}_{t-\tau})}_{\text{temporal dynamics}} \quad \text{with} \quad \boldsymbol{\nu}_t = \underbrace{\mathcal{C}(|\mathbf{x}|_t)}_{\text{frequency extraction}}$$

Recently: Some attempts at predicting the phase using DNNs.

X Generic architectures which do not account for the particular phase structure.

Proposal: Generalize phase models from signal analysis with deep learning.

$$\boldsymbol{\mu}_t = \boldsymbol{\mu}_{t-1} + l\boldsymbol{\nu}_t \quad \rightarrow \quad \boldsymbol{\mu}_t = \underbrace{\mathcal{R}(\boldsymbol{\nu}_t, \boldsymbol{\mu}_{t-1}, \dots, \boldsymbol{\mu}_{t-\tau})}_{\text{temporal dynamics}} \quad \text{with} \quad \boldsymbol{\nu}_t = \underbrace{\mathcal{C}(|\mathbf{x}|_t)}_{\text{frequency extraction}}$$

- Architectural choices (non-linearities, loss functions) adapted to the phase (periodicity).
- ▷ Identify and exploit perceptual phase invariants.

Probabilistic phase modeling

A simple example

▷ The phase appears uniformly-distributed.

Spectrogram	Phase	Histogram
		rinden kön det polektel.

A simple example

- ▷ The phase appears uniformly-distributed.
- \triangleright But is that consistent with, e.g., the sinusoidal model?

A simple example

- ▷ The phase appears uniformly-distributed.
- \triangleright But is that consistent with, e.g., the sinusoidal model?

Von Mises phase $\phi_{f,t} \sim \mathcal{VM}(\mu_{f,t},\kappa)$

 \triangleright Assume some structure (e.g., sinusoidal) for the location parameter $\mu_{f,t}$.

A simple example

- ▷ The phase appears uniformly-distributed.
- ▷ But is that consistent with, e.g., the sinusoidal model?

Von Mises phase $\phi_{f,t} \sim \mathcal{VM}(\mu_{f,t},\kappa)$

 \triangleright Assume some structure (e.g., sinusoidal) for the location parameter $\mu_{f,t}$.

- ✓ Both models are statistically relevant, but convey a different information about the phase.
 - $\triangleright~$ Uniform \rightarrow describes the *global* behavior.
 - \triangleright Von Mises \rightarrow accounts for the *local* structure.

Modeling complex-valued coefficients

Isotropic Gaussian model

$$s \sim \mathcal{N}_{\mathbb{C}}(m,\Gamma)$$
 with $\Gamma = egin{pmatrix} \gamma & 0 \ 0 & \gamma \end{pmatrix}$

X Equivalent to assuming a uniform phase: $\angle s_j = \phi_j \sim \mathcal{U}_{[0,2\pi[}$

Modeling complex-valued coefficients

Isotropic Gaussian model

$$s \sim \mathcal{N}_{\mathbb{C}}(m,\Gamma)$$
 with $\Gamma = egin{pmatrix} \gamma & 0 \ 0 & \gamma \end{pmatrix}$

X Equivalent to assuming a uniform phase: $\angle s_j = \phi_j \sim \mathcal{U}_{[0,2\pi[}$

Anisotropic Gaussian model

$$s \sim \mathcal{N}_{\mathbb{C}}(m, \Gamma)$$
 with $\Gamma = egin{pmatrix} \gamma & c \ \overline{c} & \gamma \end{pmatrix}$

c is the *relation* term, defined as a function of the phase parameter μ .

✓ Allows to incorporate phase priors.

Isotropic

Mixture model In each time-frequency bin: $x = \sum_j s_j$ with $s_j \sim \mathcal{N}_{\mathbb{C}}(m_j, \Gamma_j)$.

- \triangleright Choose an appropriate parametrization for m_j and Γ_j (a bit technical).
- ▷ Estimate the models' parameters (e.g., maximum likelihood estimation).

Mixture model In each time-frequency bin: $x = \sum_j s_j$ with $s_j \sim \mathcal{N}_{\mathbb{C}}(m_j, \Gamma_j)$.

- \triangleright Choose an appropriate parametrization for m_j and Γ_j (a bit technical).
- ▷ Estimate the models' parameters (e.g., maximum likelihood estimation).

Anisotropic Wiener filter

- \triangleright Posterior mean of the sources: $\hat{\mathbf{S}}_j = \mathbb{E}(\mathbf{S}_j | \mathbf{X}).$
- $\triangleright~$ Optimal in the MMSE sense, conservative set of estimates.
- ▷ A generalization of the (phase-unaware) Wiener filter.

Mixture model In each time-frequency bin: $x = \sum_j s_j$ with $s_j \sim \mathcal{N}_{\mathbb{C}}(m_j, \Gamma_j)$.

- \triangleright Choose an appropriate parametrization for m_j and Γ_j (a bit technical).
- ▷ Estimate the models' parameters (e.g., maximum likelihood estimation).

Anisotropic Wiener filter

- \triangleright Posterior mean of the sources: $\hat{\mathbf{S}}_j = \mathbb{E}(\mathbf{S}_j | \mathbf{X}).$
- $\triangleright~$ Optimal in the MMSE sense, conservative set of estimates.
- ▷ A generalization of the (phase-unaware) Wiener filter.

Performance

X Bayesian deep learning / variational autoencoders (VAE) are limited to isotropic distributions.

X Bayesian deep learning / variational autoencoders (VAE) are limited to isotropic distributions.

Proposal: Combine deep learning and anisotropic modeling, e.g., via anisotropic VAEs.

$$\underbrace{\mathbf{z} | \mathbf{x} \sim \mathcal{N}_{\mathbb{C}}(\psi_{\mathsf{enc}}(\mathbf{x}), \Gamma_{\mathsf{enc}})}_{\mathsf{encoder}} \quad \mathsf{and} \quad \underbrace{\mathbf{s} | \mathbf{z} \sim \mathcal{N}_{\mathbb{C}}(\psi_{\mathsf{dec}}(\mathbf{z}), \Gamma_{\mathsf{dec}})}_{\mathsf{decoder}}$$

X Bayesian deep learning / variational autoencoders (VAE) are limited to isotropic distributions.

Proposal: Combine deep learning and anisotropic modeling, e.g., via anisotropic VAEs.

$$\underbrace{\mathbf{z} | \mathbf{x} \sim \mathcal{N}_{\mathbb{C}}(\psi_{\texttt{enc}}(\mathbf{x}), \Gamma_{\texttt{enc}})}_{\texttt{encoder}} \quad \text{and} \quad \underbrace{\mathbf{s} | \mathbf{z} \sim \mathcal{N}_{\mathbb{C}}(\psi_{\texttt{dec}}(\mathbf{z}), \Gamma_{\texttt{dec}})}_{\texttt{decoder}}$$

▷ A strong effort in modeling and optimization is needed for deriving appropriate estimation techniques.

Factorization methods

A leap in the past: nonnegative matrix factorization (NMF)

Given a (nonnegative) spectrogram V, find a factorization WH such that the factors W and H are:

⊳ low rank.

▷ nonnegative.

A leap in the past: nonnegative matrix factorization (NMF)

Given a (nonnegative) spectrogram ${\bf V},$ find a factorization ${\bf WH}$ such that the factors ${\bf W}$ and ${\bf H}$ are:

 \triangleright low rank.

 \triangleright nonnegative.

Nonnegativity favors interpretability.

- $\triangleright~\mathbf{W}$ is a dictionary of spectral atoms.
- $\triangleright~{\bf H}$ is a matrix of temporal activation.

A leap in the past: nonnegative matrix factorization (NMF)

Given a (nonnegative) spectrogram ${\bf V},$ find a factorization ${\bf WH}$ such that the factors ${\bf W}$ and ${\bf H}$ are:

▷ low rank.

 \triangleright nonnegative.

Nonnegativity favors interpretability.

- $\triangleright~\mathbf{W}$ is a dictionary of spectral atoms.
- $\triangleright~{\bf H}$ is a matrix of temporal activation.

Estimation via an optimization problem:

 $\min_{\mathbf{W},\mathbf{H}} D(\mathbf{V},\mathbf{W}\mathbf{H})$

NMF for audio demixing

$$|\mathbf{X}| \approx \mathbf{W}\mathbf{H} = \sum_{j=1}^{J} \mathbf{W}_{j}\mathbf{H}_{j} = \sum_{j=1}^{J} \mathbf{V}_{j}$$

$$|\mathbf{X}| \approx \mathbf{W}\mathbf{H} = \sum_{j=1}^{J} \mathbf{W}_{j}\mathbf{H}_{j} = \sum_{j=1}^{J} \mathbf{V}_{j}$$

1. Factorize the mixture's spectrogram.

$$|\mathbf{X}| \approx \mathbf{W}\mathbf{H} = \sum_{j=1}^{J} \mathbf{W}_{j}\mathbf{H}_{j} = \sum_{j=1}^{J} \mathbf{V}_{j}$$

- 1. Factorize the mixture's spectrogram.
- 2. Cluster atoms that belong to the same source.

$$|\mathbf{X}| \approx \mathbf{W}\mathbf{H} = \sum_{j=1}^{J} \mathbf{W}_{j}\mathbf{H}_{j} = \sum_{j=1}^{J} \mathbf{V}_{j}$$

- 1. Factorize the mixture's spectrogram.
- 2. Cluster atoms that belong to the same source.
- 2. Multiply each dictionary with the corresponding activations.

$$|\mathbf{X}| \approx \mathbf{W}\mathbf{H} = \sum_{j=1}^{J} \mathbf{W}_{j}\mathbf{H}_{j} = \sum_{j=1}^{J} \mathbf{V}_{j}$$

- 1. Factorize the mixture's spectrogram.
- 2. Cluster atoms that belong to the same source.
- 2. Multiply each dictionary with the corresponding activations.

$$|\mathbf{X}| \approx \mathbf{W}\mathbf{H} = \sum_{j=1}^{J} \mathbf{W}_{j}\mathbf{H}_{j} = \sum_{j=1}^{J} \mathbf{V}_{j}$$

- 1. Factorize the mixture's spectrogram.
- 2. Cluster atoms that belong to the same source.
- 2. Multiply each dictionary with the corresponding activations.

Supervised demixing

Pretrain \mathbf{W}_1 and \mathbf{W}_2 on subsets of isolated tracks.

$$|\mathbf{X}| \approx \mathbf{W}\mathbf{H} = \sum_{j=1}^{J} \mathbf{W}_{j}\mathbf{H}_{j} = \sum_{j=1}^{J} \mathbf{V}_{j}$$

- 1. Factorize the mixture's spectrogram.
- 2. Cluster atoms that belong to the same source.
- 2. Multiply each dictionary with the corresponding activations.

Supervised demixing

Pretrain \mathbf{W}_1 and \mathbf{W}_2 on subsets of isolated tracks.

- **X** Ignores the phase / assumes the magnitudes are additive.
- X The low-rank assumption is not verified in practice.
Instead of assuming additive magnitudes $|\mathbf{X}| = |\mathbf{S}_1| + |\mathbf{S}_2| + \ldots + |\mathbf{S}_J|$

Instead of assuming additive magnitudes $|\mathbf{X}| = |\mathbf{S}_1| + |\mathbf{S}_2| + \ldots + |\mathbf{S}_J|$, consider additive complex-valued sources:

$$\mathbf{X} = \mathbf{S}_1 + \mathbf{S}_2 + \dots + \mathbf{S}_J$$
$$= \mathbf{V}_1 e^{\mathbf{i}\boldsymbol{\mu}_1} + \mathbf{V}_2 e^{\mathbf{i}\boldsymbol{\mu}_2} + \dots + \mathbf{V}_J e^{\mathbf{i}\boldsymbol{\mu}_J}$$

Instead of assuming additive magnitudes $|\mathbf{X}| = |\mathbf{S}_1| + |\mathbf{S}_2| + \ldots + |\mathbf{S}_J|$, consider additive complex-valued sources:

$$\mathbf{X} = \mathbf{S}_1 + \mathbf{S}_2 + \ldots + \mathbf{S}_J$$
$$= \mathbf{V}_1 e^{\mathbf{i}\boldsymbol{\mu}_1} + \mathbf{V}_2 e^{\mathbf{i}\boldsymbol{\mu}_2} + \ldots + \mathbf{V}_J e^{\mathbf{i}\boldsymbol{\mu}_J}$$

And factorize each spectrogram with NMF: $\mathbf{V}_j = \mathbf{W}_j \mathbf{H}_j$

Instead of assuming additive magnitudes $|\mathbf{X}| = |\mathbf{S}_1| + |\mathbf{S}_2| + \ldots + |\mathbf{S}_J|$, consider additive complex-valued sources:

$$\mathbf{X} = \mathbf{S}_1 + \mathbf{S}_2 + \ldots + \mathbf{S}_J$$
$$= \mathbf{V}_1 e^{\mathbf{i}\boldsymbol{\mu}_1} + \mathbf{V}_2 e^{\mathbf{i}\boldsymbol{\mu}_2} + \ldots + \mathbf{V}_J e^{\mathbf{i}\boldsymbol{\mu}_J}$$

And factorize each spectrogram with NMF: $\mathbf{V}_j = \mathbf{W}_j \mathbf{H}_j$

Estimation

$$\min_{\mathbf{W},\mathbf{H},\boldsymbol{\mu}} ||\mathbf{X} - \sum_{j=1}^{J} [\mathbf{W}_{j}\mathbf{H}_{j}]e^{\mathrm{i}\boldsymbol{\mu}_{j}}||^{2}$$

Instead of assuming additive magnitudes $|\mathbf{X}| = |\mathbf{S}_1| + |\mathbf{S}_2| + \ldots + |\mathbf{S}_J|$, consider additive complex-valued sources:

$$\mathbf{X} = \mathbf{S}_1 + \mathbf{S}_2 + \ldots + \mathbf{S}_J$$
$$= \mathbf{V}_1 e^{\mathbf{i}\boldsymbol{\mu}_1} + \mathbf{V}_2 e^{\mathbf{i}\boldsymbol{\mu}_2} + \ldots + \mathbf{V}_J e^{\mathbf{i}\boldsymbol{\mu}_J}$$

And factorize each spectrogram with NMF: $\mathbf{V}_j = \mathbf{W}_j \mathbf{H}_j$

Estimation

$$\min_{\mathbf{W},\mathbf{H},\boldsymbol{\mu}} ||\mathbf{X} - \sum_{j=1}^{J} [\mathbf{W}_{j}\mathbf{H}_{j}] e^{\mathrm{i}\boldsymbol{\mu}_{j}} ||^{2} + \mathcal{C}(\boldsymbol{\mu})$$

▷ Add some model-based phase regularization (e.g., sinusoidal).

Instead of assuming additive magnitudes $|\mathbf{X}| = |\mathbf{S}_1| + |\mathbf{S}_2| + \ldots + |\mathbf{S}_J|$, consider additive complex-valued sources:

$$\mathbf{X} = \mathbf{S}_1 + \mathbf{S}_2 + \ldots + \mathbf{S}_J$$
$$= \mathbf{V}_1 e^{\mathbf{i}\boldsymbol{\mu}_1} + \mathbf{V}_2 e^{\mathbf{i}\boldsymbol{\mu}_2} + \ldots + \mathbf{V}_J e^{\mathbf{i}\boldsymbol{\mu}_J}$$

And factorize each spectrogram with NMF: $\mathbf{V}_j = \mathbf{W}_j \mathbf{H}_j$

Estimation

$$\min_{\mathbf{W},\mathbf{H},\boldsymbol{\mu}} ||\mathbf{X} - \sum_{j=1}^{J} [\mathbf{W}_{j}\mathbf{H}_{j}] e^{\mathrm{i}\boldsymbol{\mu}_{j}} ||^{2} + \mathcal{C}(\boldsymbol{\mu})$$

▷ Add some model-based phase regularization (e.g., sinusoidal).

Performance

 $\triangleright~\mbox{Complex}~\mbox{NMF} > \mbox{NMF}:$ the advantage of accounting for the phase.

Instead of assuming additive magnitudes $|\mathbf{X}| = |\mathbf{S}_1| + |\mathbf{S}_2| + \ldots + |\mathbf{S}_J|$, consider additive complex-valued sources:

$$\mathbf{X} = \mathbf{S}_1 + \mathbf{S}_2 + \ldots + \mathbf{S}_J$$
$$= \mathbf{V}_1 e^{\mathbf{i}\boldsymbol{\mu}_1} + \mathbf{V}_2 e^{\mathbf{i}\boldsymbol{\mu}_2} + \ldots + \mathbf{V}_J e^{\mathbf{i}\boldsymbol{\mu}_J}$$

And factorize each spectrogram with NMF: $\mathbf{V}_j = \mathbf{W}_j \mathbf{H}_j$

Estimation

$$\min_{\mathbf{W},\mathbf{H},\boldsymbol{\mu}} ||\mathbf{X} - \sum_{j=1}^{J} [\mathbf{W}_{j}\mathbf{H}_{j}] e^{\mathrm{i}\boldsymbol{\mu}_{j}} ||^{2} + \mathcal{C}(\boldsymbol{\mu})$$

▷ Add some model-based phase regularization (e.g., sinusoidal).

Performance

- $\triangleright~$ Complex NMF > NMF: the advantage of accounting for the phase.
- $\triangleright~$ Complex NMF > NMF + phase recovery: the advantage of a joint training approach.

X The low-rank assumption does not hold in practice for spectrograms.

X The low-rank assumption does not hold in practice for spectrograms.

Proposal: leverage DNNs to transform the data and make it "factorizable".

X The low-rank assumption does not hold in practice for spectrograms.

Proposal: leverage DNNs to transform the data and make it "factorizable".

- ✓ High expressive power of DNNs.
- ✓ Interpretability of the factorization.

X The low-rank assumption does not hold in practice for spectrograms.

Proposal: leverage DNNs to transform the data and make it "factorizable".

- High expressive power of DNNs.
- ✓ Interpretability of the factorization.

A first attempt: VAE with a sparse dictionary model.

Nice performance in terms of sparsity and speech modeling / reconstruction.
Fixed dictionary and no nonnegativity: non-interpretable factors.

Assume we have a high quality parametric generative model for a given source.

- Assume we have a high quality parametric generative model for a given source.
- Reconsider it as an synthesis model from some factorized latent space.

- Assume we have a high quality parametric generative model for a given source.
- Reconsider it as an synthesis model from some factorized latent space.

source x filter Φ^{-1}

- Assume we have a high quality parametric generative model for a given source.
- Reconsider it as an synthesis model from some factorized latent space.

source x filter Φ^{-1}

Proposal: incorporate the generative model into the demixing pipeline.

✓ High quality backing track generation.

- Assume we have a high quality parametric generative model for a given source.
- Reconsider it as an synthesis model from some factorized latent space.

source x filter Φ^{-1}

Proposal: incorporate the generative model into the demixing pipeline.

- High quality backing track generation.
- Optimal generative model parameters = a preset!

Conclusion

 $\triangleright\,$ The room for improvement of phase recovery: more potential gain than with magnitudes.

▷ A promising approach: leveraging model-based phase properties.

 $\triangleright\,$ The room for improvement of phase recovery: more potential gain than with magnitudes.

▷ A promising approach: leveraging model-based phase properties.

 $\triangleright\,$ The room for improvement of phase recovery: more potential gain than with magnitudes.

▷ A promising approach: leveraging model-based phase properties.

- ✓ Performance in controlled conditions.
- ✓ No more phase problem.

▷ The room for improvement of phase recovery: more potential gain than with magnitudes.

▷ A promising approach: leveraging model-based phase properties.

- ✓ Performance in controlled conditions.
- ✓ No more phase problem.
- **X** Greediness in (annotated) training data.

▷ The room for improvement of phase recovery: more potential gain than with magnitudes.

▷ A promising approach: leveraging model-based phase properties.

- ✓ Performance in controlled conditions.
- ✓ No more phase problem.
- **X** Greediness in (annotated) training data.
- X Lacks interpretability and flexibility.

The proposed alternative

The proposed alternative

Open questions

- ▷ How to handle phase in deep learning?
- ▷ How to exploit anisotropic probabilistic modeling?
- ▷ How to efficiently learn to factorize?

Magron et al., "Phase reconstruction of spectrograms with linear unwrapping: application to audio signal restoration", *Proc. EUSIPCO*, August 2015.

Magron et al., "Model-based STFT phase recovery for audio source separation", *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, June 2018.

Magron and Virtanen, "On modeling the STFT phase of audio signals with the von Mises distribution", *Proc. IWAENC*, September 2018.

Magron et al., "Phase-dependent anisotropic Gaussian model for audio source separation", *Proc. IEEE ICASSP*, March 2017.

Magron et al., "Complex NMF under phase constraints based on signal modeling: application to audio source separation", *Proc. IEEE ICASSP*, March 2016.

Sadeghi and Magron, "A sparsity-promoting dictionary model for variational autoencoders", *Proc. of Interspeech*, September 2022.

Thanks!

https://magronp.github.io/

https://github.com/magronp/

