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Audio demixing

▷ Audio signals are composed of several constitutive sounds: multiple speakers, background noise,

domestic sounds, music instruments...

Source separation or Demixing = recovering the sources from the mixture.

▷ A useful task per se (e.g., augmented mixing from mono

to stereo).

▷ An important preprocessing for many analysis tasks

(e.g., polyphonic music transcription).

An example: Backing track generation

▷ Consider a mixture

▷ Demix the instruments and create a backing track
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Setting the stage

▷ The raw material: audio signals.

▷ It’s hard to see structure there...

▷ We rather transform them into a time-frequency representation, e.g., a spectrogram.
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The demixing pipeline

Transform Synthesis
Separation model

▷ The transform is usually the short-time Fourier transform (STFT).

▷ The separator is a deep neural network, trained using a (large) dataset of isolated tracks.

▷ The synthesis is performed through inverse STFT.

Nowadays demixing performance:
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The phase catch

x ∈ RN STFT−−−→ X ∈ CF×T

The STFT produces a spectrogram |X|

... but also a phase ∠X.

STFT

Audio signal

Spectrogram

The actual demixing pipeline:

Transform Synthesis
Separation model

▷ The mixture’s phase is assigned to each source using a Wiener-like filter.

6



The phase catch

x ∈ RN STFT−−−→ X ∈ CF×T

The STFT produces a spectrogram |X|
... but also a phase ∠X.

STFT

Audio signal

Spectrogram Phase

The actual demixing pipeline:

Transform Synthesis
Separation model

▷ The mixture’s phase is assigned to each source using a Wiener-like filter.

6



The phase catch

x ∈ RN STFT−−−→ X ∈ CF×T

The STFT produces a spectrogram |X|
... but also a phase ∠X.

STFT

Audio signal

Spectrogram Phase

The actual demixing pipeline:

Transform Synthesis
Separation model

▷ The mixture’s phase is assigned to each source using a Wiener-like filter.

6



The potential of phase recovery

✗ Wiener-like filter: Issues in sound quality when sources overlap in the TF domain.

When sources overlap:

|X| ≠ |S1|+ |S2|
∠X ̸= ∠S1 or ∠S2
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Overlap map

Given the current state of the art:

Main message

More potential gain in phase recovery than in

magnitude estimation.
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Phase recovery for audio demixing

Transform Synthesis
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Model-based phase recovery



Sinusoidal phase model

Consider a mixture of sinusoids: x(n) =
∑P

p=1Ap sin(2π νp︸︷︷︸
normalized frequency

n+ ϕ0,p).

The STFT phase follows: µf,t = µf,t−1 + lνf,t

Sinusoids Linear phase
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✓ Accounts for non-stationary signals, suitable for real-time processing.

✗ Bad performance for “pure” phase recovery: need to use an additional information.
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An iterative source separation algorithm

Problem Given target magnitude spectrograms Vj , solve:

min
{Ŝj}

||X−
J∑

j=1

Ŝj ||2 s.t. |Ŝj | = Vj

Strategy

▷ Obtain an iterative procedure using some optimization

framework (e.g., majorization-minimization).

▷ Initialize the procedure using the sinusoidal phase model.

0

V1

V2
X

✓ Leveraging the sinusoidal phase model reduces interference between source estimates.
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Ŝ2

✓ Leveraging the sinusoidal phase model reduces interference between source estimates.

10



An iterative source separation algorithm

Problem Given target magnitude spectrograms Vj , solve:

min
{Ŝj}
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Perspective: towards deep phase recovery

Recently: Some attempts at predicting the phase using DNNs.

✗ Generic architectures which do not account for the particular phase structure.

Proposal: Generalize phase models from signal analysis with deep learning.

µt = µt−1 + lνt → µt = R(νt,µt−1, . . . ,µt−τ )︸ ︷︷ ︸
temporal dynamics

with νt = C(|x|t)︸ ︷︷ ︸
frequency extraction

▷ Architectural choices (non-linearities, loss functions)

adapted to the phase (periodicity).

▷ Identify and exploit perceptual phase invariants. =
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Probabilistic phase modeling



A statistical view

A simple example

▷ The phase appears uniformly-distributed.

▷ But is that consistent with, e.g., the sinusoidal model?

Phase HistogramSpectrogram

Von Mises phase ϕf,t ∼ VM(µf,t, κ)

▷ Assume some structure (e.g., sinusoidal) for the location parameter µf,t.

0 2 π
φ

p
(φ

|µ
,κ

)

µ

κ=0
κ=1
κ=10

✓ Both models are statistically relevant, but convey a different information about the phase.

▷ Uniform → describes the global behavior.

▷ Von Mises → accounts for the local structure.
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Modeling complex-valued coefficients

Isotropic Gaussian model

s ∼ NC(m,Γ) with Γ =

(
γ 0

0 γ

)

✗ Equivalent to assuming a uniform phase: ∠sj = ϕj ∼ U[0,2π[

Isotropic

Anisotropic Gaussian model

s ∼ NC(m,Γ) with Γ =

(
γ c

c̄ γ

)

c is the relation term, defined as a function of the phase parameter µ.

✓ Allows to incorporate phase priors.

Anisotropic

13
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Application to demixing

Mixture model In each time-frequency bin: x =
∑

j sj with sj ∼ NC(mj ,Γj).

▷ Choose an appropriate parametrization for mj and Γj (a bit technical).

▷ Estimate the models’ parameters (e.g., maximum likelihood estimation).

Anisotropic Wiener filter

▷ Posterior mean of the sources: Ŝj = E(Sj |X).

▷ Optimal in the MMSE sense, conservative set of estimates.

▷ A generalization of the (phase-unaware) Wiener filter.

Performance

✓ Including a phase prior in the filter improves the separation quality.
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Perspective: anisotropic deep learning

✗ Bayesian deep learning / variational autoencoders (VAE) are limited to isotropic distributions.

Proposal: Combine deep learning and anisotropic modeling, e.g., via anisotropic VAEs.

z|x ∼ NC(ψenc(x),Γenc)︸ ︷︷ ︸
encoder

and s|z ∼ NC(ψdec(z),Γdec)︸ ︷︷ ︸
decoder

▷ A strong effort in modeling and optimization is needed for deriving appropriate estimation

techniques.

15
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Factorization methods



A leap in the past: nonnegative matrix factorization (NMF)

Given a (nonnegative) spectrogram V, find a factorization WH such that the factors W and H are:

▷ low rank.

▷ nonnegative.

Nonnegativity favors interpretability.

▷ W is a dictionary of spectral atoms.

▷ H is a matrix of temporal activation.
atoms

activations

Estimation via an optimization problem:

min
W,H

D(V,WH)
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NMF for audio demixing

|X| ≈ WH =

J∑
j=1

WjHj =

J∑
j=1

Vj

Procedure

1. Factorize the mixture’s spectrogram.

2. Cluster atoms that belong to the same source.

2. Multiply each dictionary with the corresponding

activations.

Supervised demixing

Pretrain W1 and W2 on subsets of isolated tracks.

✗ Ignores the phase / assumes the magnitudes are additive.

✗ The low-rank assumption is not verified in practice.
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✗ The low-rank assumption is not verified in practice.
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Complex NMF

Instead of assuming additive magnitudes |X| = |S1|+ |S2|+ . . .+ |SJ |

, consider additive

complex-valued sources:

X = S1 + S2 + . . .+ SJ

= V1e
iµ1 +V2e

iµ2 + . . .+VJe
iµJ

And factorize each spectrogram with NMF: Vj = WjHj

Estimation

min
W,H,µ

||X−
J∑

j=1

[WjHj ]e
iµj ||2

+ C(µ)

▷ Add some model-based phase regularization (e.g., sinusoidal).

Performance

▷ Complex NMF > NMF: the advantage of accounting for the phase.

▷ Complex NMF > NMF + phase recovery: the advantage of a joint training approach.
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Perspective: learning to factorize

✗ The low-rank assumption does not hold in practice for spectrograms.

Proposal: leverage DNNs to transform the data and make it “factorizable”.

✓ High expressive power of DNNs.

✓ Interpretability of the factorization.

pitch timbre dynamics

source x filter x enveloppe

A first attempt: VAE with a sparse dictionary model.

   DecoderEncoder =X

✓ Nice performance in terms of sparsity and speech modeling / reconstruction.

✗ Fixed dictionary and no nonnegativity: non-interpretable factors.
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A (distant) dream: joint synthesis / separation

▷ Assume we have a high quality parametric generative model

for a given source.

▷ Reconsider it as an synthesis model from some factorized

latent space.

Proposal: incorporate the generative model into the demixing pipeline.

Transform Synthesis

✓ High quality backing track generation.

✓ Optimal generative model parameters = a preset!
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Conclusion



Where are we now?

Main messages

▷ The room for improvement of phase recovery: more potential gain than with magnitudes.

▷ A promising approach: leveraging model-based phase properties.

The current trend: from nonnegative to time-domain deep learning.

✓ Performance in controlled conditions.

✓ No more phase problem.

✗ Greediness in (annotated) training data.

✗ Lacks interpretability and flexibility.
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The proposed alternative

Complex-domain / phase-aware deep learning

✓ Robustness/flexibility of time-frequency processing.

✓ Performance of processing all the data exhaustively.

Open questions

▷ How to handle phase in deep learning?

▷ How to exploit anisotropic probabilistic modeling?

▷ How to efficiently learn to factorize?
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Thanks!

https://magronp.github.io/

https://github.com/magronp/
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