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Research field

Audio signal processing

. Speech technologies: telecommunications, hearing aids, voice pathology detection.

. Acoustic scenes analysis: urban monitoring, biodiversity surveillance, assistants for the elderly.

. Music industry: computer-assisted music, instrument learning, music streaming.
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Audio source separation

. Audio signals are composed of several constitutive sounds: multiple speakers, background noise,

domestic sounds, musical instruments...

Source separation = recovering the sources from the mixture.

. Automatic speech recognition (clean speech vs. noise).

. Rhythm analysis (drums vs. harmonic instruments).

. Time-stretching (transients vs. partials).

Time-frequency separation = acts on the short-time Fourier

transform (STFT).
STFT

Audio signal

Magnitude Phase
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General framework

Transform Synthesis

Separation model
(NMF, DNN...)

1. Nonnegative representation, e.g., V = |STFT(x)|2.

2. Structured model, e.g., nonnegative matrix factorization, deep

neural networks.

3. Nonnegative masking and synthesis: ŝj = STFT−1(Mj �X).

atoms

activations
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The phase problem

Nonnegative masking: ∠Ŝj = ∠X.

7 Issues in sound quality when sources overlap in the TF domain.

7 Inconsistency : Ŝj /∈ STFT(RN ).

The importance of phase

. Highlighted in NMF-based [ICASSP ’15] and recent

DNN-based techniques.

. Given the current state-of-the-art, there is more potential

gain for reconstructing the phase than improving magnitude

estimation.

Magron et al., “Phase recovery in NMF for audio source separation: an insightful benchmark”, Proc. IEEE ICASSP, April 2015.
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Phase recovery

Consistency-based approaches

Inconsistency: I(Y) = ||Y − STFT ◦ STFT−1(Y)||2

. Minimization of I with alternating projections [Griffin ’84].

. Extension to multiple-signals mixtures for source separation [Gunawan ’10].

. Combination with Wiener filtering [Le Roux ’13].

My approach

Leveraging model-based phase properties in source separation.

Gunawan and Sen, “Iterative phase estimation for the synthesis of separated sources from single-channel mixtures”, IEEE Signal Processing Letters, May 2010.
Griffin and Lim, “Signal estimation from modified short-time Fourier transform”, IEEE Transactions on Acoustics, Speech and Signal Processing, April 1984.
Le Roux and Vincent, “Consistent Wiener filtering for audio source separation”, IEEE Signal Processing Letters, March 2013.
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Model-based phase recovery

Probabilistic phase modelling

Joint estimation of magnitude and phase

Perspectives



Model-based phase recovery



Sinusoidal phase model

Consider a mixture of sinusoids: x(n) =
∑P
p=1Ap sin(2π νp︸︷︷︸

normalized frequency

n+ φ0,p).

The STFT phase follows: µf,t = µf,t−1 + 2πlνf,t

. l is the hop size of the STFT.

. νf,t = νp for channels f under the influence of the frequency peak p.

Sinusoids Linear phase
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3 Accounting for non-stationary signals.

3 A suitable technique for real-time processing.
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Sinusoidal phase model

Restoration of piano pieces:

. Better performance than the GL algorithm: a lower

inconsistency does not mean a higher SDR.

. The longer the window, the higher SDR (better frequency

resolution), but this does not apply to non-stationary signals.

7 But overall low SDR: error propagates over time frames. -50
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Applications scenarios

. Few frames to restore: click removal [EUSIPCO ’15].

. Exploit additional information: source separation.
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Magron et al., “Phase reconstruction of spectrograms with linear unwrapping: application to audio signal restoration”, Proc. EUSIPCO, August 2015.
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Source separation algorithm

Problem Given target magnitude values Vj , solve:

min
{Ŝj}
||X−

J∑
j=1

Ŝj ||2 s.t. |Ŝj | = Vj

Majorization-Minimization (MM) algorithm

. Introduce auxiliary variables Yj s.t. X =
∑
jYj .

. Majorize the loss using the Jensen inequality:

||X−
J∑
j=1

Ŝj ||2 ≤
J∑
j=1

||Yj − Ŝj ||2

λj

. Incorporate the constraints using Lagrange multipliers, and

find a saddle point of the resulting functional.

. Iterative procedure: initialize with the sinusoidal phase.

0

V1

V2
X
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Ŝj ||2 s.t. |Ŝj | = Vj
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Ŝ
(it)
1

Ŝ
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Source separation algorithm - performance

DSD100 dataset: 100 mixtures of 4 sources, ground truth magnitudes.

Initialization impact:
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3 Leveraging the sinusoidal phase model

reduces interference between source estimates.

Magron et al., “Model-based STFT phase recovery for audio source separation”, IEEE/ACM Transactions on Audio, Speech, and Language Processing, June 2018.
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Onsets phase

Onsets play an important perceptual role and initialize the sinusoidal model.

Model of repeated audio events [WASPAA ’15]

. From one onset frame to another, an audio event is

the same up to scaling and delay.

. Consequence on the phase:

µf,t = ψf︸︷︷︸
invariant

+ ηt︸︷︷︸
offset

f

Repeating attacks Phase invariant

Incorporation in a mixture model

. Estimation with coordinate descent or MM.

. Slight improvement over using the mixture’s phase.

Magron et al., “Phase reconstruction of spectrograms based on a model of repeated audio events”, Proc. IEEE WASPAA, October 2015.
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How to re-introduce consistency?

A first (naive) approach in the STFT domain:

min
{Ŝj}
||X−

J∑
j=1

Ŝj ||2 s.t. |Ŝj | = Vj

and I(Ŝj) = 0︸ ︷︷ ︸
consistency

7 An ill-posed problem (conflicting constraints).

Time-domain formulation

min
{ŝj}

∑
j

|||STFT(ŝj)| −Vj ||2︸ ︷︷ ︸
magnitude mismatch

s.t.
∑
j

ŝj = x︸ ︷︷ ︸
mixing

. Optimization with MM: the MISI algorithm, but convergence-guaranteed [Wang ’19], [SPL ’20].

Wang et al., “A Modified Algorithm for Multiple Input Spectrogram Inversion”, Proc. Interspeech, September 2019.
Magron and Virtanen, “Online spectrogram inversion for audio source separation”, IEEE Signal Processing Letters, January 2020.
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Ŝj ||2︸ ︷︷ ︸
mixing
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ŝj = x︸ ︷︷ ︸
mixing

. Optimization with MM: the MISI algorithm, but convergence-guaranteed [Wang ’19], [SPL ’20].

Wang et al., “A Modified Algorithm for Multiple Input Spectrogram Inversion”, Proc. Interspeech, September 2019.
Magron and Virtanen, “Online spectrogram inversion for audio source separation”, IEEE Signal Processing Letters, January 2020.

12



How to re-introduce consistency?

A first (naive) approach in the STFT domain:

min
{Ŝj}
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MISI overview

On top of initial estimates ŝj , iterate the following:

STFT Ŝj = STFT(ŝj)

Magnitude modification Yj = Vj � Ŝj

|Ŝj |
Inverse STFT yj = iSTFT(Yj)

Mixing ŝj = yj + 1
J

(
x−

∑J
i=1 yi

)
. Extends the Griffin-Lim algorithm to multiple sources in mixture models.

7 Offline processing, not applicable in real-time.

Gunawan and Sen, “Iterative phase estimation for the synthesis of separated sources from single-channel mixtures”, IEEE Signal Processing Letters, May 2010.

13



Online MISI

Problem: MISI involves the inverse STFT, which does not operate online:

ŝj(n) =

T−1∑
k=0

s′j,k(n− tl) with s′j,k = iDFT(Ŝj,k)�w

Approach: Only account for a limited amount of future time frames [Zhu ’07]

. Split the overlap-add around the current frame:

ŝj(n) =
t−1∑
k=0

s′j,k(n− tl)︸ ︷︷ ︸
past frames

+
∑
k=t

s′j,k(n− tl)︸ ︷︷ ︸
present and future frames

. Only use K look-ahead future frames: allows for real-time

processing and alternative initialization (e.g., sinusoidal phase).

STFT frame

windowing

iDFT and

windowing
and DFT

STFT
modi�cations

overlap
add

Mag. Phase

Zhu et al., “Real-time signal estimation from modified short-time Fourier transform magnitude spectra”, IEEE Transactions on Audio, Speech, and Language Processing, July 2007.

14



Online MISI

Problem: MISI involves the inverse STFT, which does not operate online:
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Alternative divergences

Problem setting

. MISI relies on the Euclidean distance: not the most appropriate in audio.

. Popular alternatives: the beta-divergences (e.g., Kullback-Leibler, Itakura-Saito).

Phase retrieval with beta-divergences

min
{ŝj}

∑
j

Dβ(|STFT(ŝj)|,Vj) s.t.
∑
j

ŝj = x

. Optimization with accelerated gradient descent or ADMM.

. First for single-signal [Vial ’21], then extended to multiple-signals [ICASSP ’21].

. Experimentally: alternative divergences (e.g., KL) > Euclidean.

Vial et al., “Phase retrieval with Bregman divergences and application to audio signal recovery”, IEEE Journal of Selected Topics in Signal Processing, January 2021.
Magron et al., “Phase recovery with Bregman divergences for audio source separation”, Proc. IEEE ICASSP, June 2021.
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Probabilistic phase modelling



Probabilistic framework

Why?

. Modeling uncertainty.

. Incorporating prior information.

. Obtaining estimators with nice statistical properties.

. Deriving inference schemes with convergence guarantees.

Traditionally

Circularly-symmetric (or isotropic) sources ⇐⇒ Uniform phase

⇒ Phase-unaware estimators.

My approach

A phase-aware probabilistic framework for source separation.
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Is the phase really uniform?

A simple example (piano piece), where the phase appears uniformly-distributed.

Phase HistogramSpectrogram

But: is that consistent with, e.g., the sinusoidal model?

Interpretation

. The histogram validates an iid assumption on {φf,t} :

φf,t ∼ D and independent → D = U[0,2π[

. This model only conveys a global information.

What about the local structure of the phase?
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Von Mises phase model

Von Mises distribution φf,t ∼ VM(µf,t, κ)

. µf,t = location parameter (similar to a mean).

. κ = concentration parameter (similar to an inverse variance,

quantifies non-uniformity).
0 2 π

φ

p
(φ

|µ
,κ

)

µ

κ=0
κ=1
κ=10

Model

. µf,t given by the sinusoidal phase model.

. Center the phases: ψf,t = φf,t − µf,t.

Distribution Uniform VM

Centered VM

φf,t ∼ U[0,2π[ φft ∼ VM(µf,t, κ)

ψf,t ∼ VM(0, κ)

iid 3 7

3

Local structure 7 3

3

Gerkmann, “Bayesian estimation of clean speech spectral coefficients given a priori knowledge of the phase”, IEEE Transactions on Signal Processing, August 2014.
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Von Mises phase model

Model estimation

. For µf,t: quadratic interpolation (as before).

. For κ: maximum likelihood: I1(κ)
I0(κ)

= 1
FT

∑
f,t cos(ψft), solved with fast numerical schemes.

Validation

. κ quantifies the “sinusoidality” of the sources.

. Both uniform and VM models are statistically relevant.

. They convey different information about the phase (global vs. local).

bass drums other vocals

1

1.5

2

2.5

3

3.5

Centered phase Histogram

Magron and Virtanen, “On modeling the STFT phase of audio signals with the von Mises distribution”, Proc. IWAENC, September 2018.
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Multiple sources model

In each time-frequency bin:

x =

J∑
j=1

sj

Phase-aware Tractable

Isotropic Gaussian 7 3

Rayleigh + von Mises 3 7

Isotropic Gaussian model

. sj ∼ NC(mj ,Γj) with Γj =

(
γj 0

0 γj

)
(mj : mean (location) / γj : variance (energy)).

. Equivalently in polar coordinates, sj = rje
iφj with:

. rj ∼ R(vj) (Rayleigh magnitude).

. φj ∼ U[0,2π[ (uniform phase).

Rayleigh + von Mises model: uniform → von Mises: phase-aware

... but not tractable.
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Anisotropic Gaussian model

Anisotropic sources

sj ∼ NC(mj ,Γj) with Γj =

(
γj cj
c̄j γj

)

. cj is the relation term, non-zero here.

AnisotropicIsotropic

Model definition: use the moments of the Rayleigh + von Mises

model.

Three parameters:

. vj : energy (spectrogram model).

. µj : phase location (e.g., sinusoidal).

. κ: quantifies anisotropy / non-uniformity.

Anisotropic Gaussian model

Fully tractable, phase-aware, and interpretable.

Rayleigh+von Mises

Moments

Anisotropic Gaussian
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Application to source separation

Anisotropic Wiener filter [ICASSP ’17]

. Posterior mean of the sources: Ŝj = E(Sj |X).

. Optimal in the MMSE sense, conservative set of estimates.

. If κ→ 0, it reduces to the Wiener filter.

Performance on the DSD100 dataset:

SDR SIR SAR

Wiener 8.5 19.1 9.1

Anisotropic Wiener 9.7 21.9 10.1

3 Including phase information in the filter improves the separation quality.

3 Potential of a phase-aware statistical framework.

Magron et al., “Phase-dependent anisotropic Gaussian model for audio source separation”, Proc. IEEE ICASSP, March 2017.
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Again... consistency?

Reminder: the (anisotropic) Wiener filter produces inconsistent matrices.

Consistent anisotropic Wiener [WASPAA ’17]

. Consider the loss function:

+ {consistency constraint}

. Minimization with preconditioned conjugate gradient descent.

Sinusoidal model Consistent estimates

Wiener 7 7

CW 7 3

AW 3 7

CAW 3 3
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Iterations
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Magron et al., “Consistent anisotropic Wiener filtering for audio source separation”, Proc. IEEE WASPAA, October 2017.
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Joint estimation of magnitude

and phase



Realistic source separation

Goal: estimate the magnitude and the phase of the sources.

. Needs an additional spectrogram-like model and estimation technique.

atoms

activations

Approaches

. Two-stage: first estimate the magnitude, and then recover the phase.

. One-stage: jointly estimate the magnitude and the phase.
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Two-stage approaches

NMF + phase recovery [the previous papers]

. Phase recovery induces a slight improvement (interference reduction).

DNN + phase recovery [Interspeech ’18, IWAENC ’18]

. More significant results (DNNs > NMF).

. Phase recovery makes sense on top of good magnitude

estimates.

Magron et al., “Reducing interference with phase recovery in DNN-based monaural singing voice separation”, Proc. Interspeech. September 2018.
Drossos et al., “Harmonic-percussive source separation with deep neural networks and phase recovery”, Proc. IWAENC, September 2018.
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Complex NMF

NMF-based spectrogram decomposition

|X| ≈WH =

J∑
j=1

WjHj

7 Assumes the additivity of the sources’ magnitudes.

7 Phase is ignored.
atoms

activations

Phase-constrained complex NMF [ICASSP ’16]

3 Assumes additivity of the sources, and factorize each source spectrogram.

X ≈
J∑
j=1

WjHje
iµj

−−−−−−→
estimation

min
W,H,µ

||X−
J∑
j=1

[WjHj ]e
iµj ||2 + C(µ)

. Regularize the phases with model-based properties.

. Optimization with coordinate descent or MM.

Magron et al., “Complex NMF under phase constraints based on signal modeling: application to audio source separation”, Proc. IEEE ICASSP, March 2016.
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Extending complex NMF to beta-divergences

Problem

. NMF can be estimated using a variety of loss functions (e.g., beta-divergences).

. Complex NMF is estimated using the Euclidean distance.

. Most beta-divergences are defined for nonnegative quantities only.

How to extend complex NMF to non-Euclidean metrics?

A probabilistic view on NMF

. NMF can be used in a probabilistic model to structure some parameter.

. Maximum likelihood estimation involves some loss function depending on the underlying

statistical model.

EuNMF (Real) Gaussian r ∼ N (m,σ2) m = wh Euclidean

KLNMF Poisson r ∼ P(v) v = wh Kullback-Leibler

ISNMF Isotropic Gaussian x ∼ NC(0, v
2I) v2 = wh Itakura-Saito

Complex NMF Isotropic Gaussian x ∼ NC(m,σ
2I) m = wheiµ Euclidean
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Complex ISNMF [TASLP ’19]

Anisotropic Gaussian sources

sj ∼ NC(mj ,

(
γj cj
c̄j γj

)
)

. The moments depend on three parameters.

. NMF on the energy parameter: vj = wjhj .

. Markov chain prior on the phase parameter µj .

Complex ISNMF

. Estimation with an expectation-maximization algorithm:

. E-step: compute the posterior moments.

. M-step: minimize some Itakura-Saito divergence to estimate the parameters.

. Better results than the Euclidean (complex) NMF and the (nonnegative) ISNMF.

Magron and Virtanen, “Complex ISNMF: a phase-aware model for monaural audio source separation”, IEEE/ACM Transactions on Audio, Speech and Language Processing, January 2019.
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Perspectives



From nonnegative to time-domain deep learning

3 Performance in controlled conditions.

3 No more phase problem.

7 Greediness in (annotated) training data.

7 Need to retrain from scratch for a similar task.

7 Performance decreases when test 6= training.

Major challenges

. Complexity and diversity of acoustic scenes: need for flexible systems.

. Energetic impact of deep learning: need for more data-efficiency [Strubell ’19].

Strubell et al., “Energy and policy considerations for deep learning in NLP”, Proc. ACL, July 2019.
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An alternative

Complex-domain deep learning

3 Robustness/flexibility of time-frequency processing [Ditter ’20].

3 Performance of processing all the data exhaustively.

. How to handle phase in deep learning?

. How to promote robustness in complex-valued systems?

. How to efficiently use time-domain data?

Ditter and Gerkmann, “A multi-phase gammatone filterbank for speech separation via Tasnet”, Proc. IEEE ICASSP, May 2020.
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Complex-valued networks

Deep phase processing

3 Generalize phase models from signal analysis with deep learning.

µt = µt−1 + 2πlνt → µt = R(νt,µt−1, . . . ,µt−τ )︸ ︷︷ ︸
temporal dynamic

with νt = C(|x|t)︸ ︷︷ ︸
frequency extraction

. Architectural choices (non-linearities, loss functions) adapted to

the phase (periodicity).

. Identify and exploit perceptual phase invariants.
=

Joint magnitude and phase processing.

3 Exploit a polar decomposition for structuring the data.

. Joint latent representation from magnitude and phase.

. (Variational) anisotropic auto-encodeurs.
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Complex-valued networks

Promoting robustness

. Noise-invariance by complex domain adaptation.

. Reverberation-invariance through leveraging spatial models.

Conjunction with time-domain approaches

3 Network design in the complex domain, refine the transform with time-domain training data.

. Direct transform: perceptually-motivated filterbanks.

. Inverse transform: deep unfolding of phase recovery algorithm.
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Conclusion

Main messages

. The room for improvement of phase recovery: more potential gain than with magnitudes.

. A promising approach: leveraging model-based phase properties.

. Incorporate phase in deep learning for complex-valued networks: performance and robustness.

https://magronp.github.io/

https://github.com/magronp/
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