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Academic background
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Audio source separation

Audio content is usually composed of several constitutive sounds:

P
> One or several speakers + noise. w‘ ‘
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Audio source separation

Audio content is usually composed of several constitutive sounds:

> One or several speakers + noise. “ﬂ-i
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> Environmental / domestic sounds. ? t— /| -[,
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> Musical instruments. X=2.8;
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Source separation = recovering the sources from the mixture.

> Automatic speech recognition — clean speech vs. noise.
> Rhythm analysis — drums vs. harmonic instruments.

> Stationary / transient decomposition — time-stretching.

Time-frequency separation = acts on the short-time Fourier transform (STFT).

Magnitude Phase

Audio signal

"’ STFT
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1. Nonnegative representation: V = [STFT(x)|2.
2. Structured model:

> Nonnegative matrix factorization (NMF).
> Deep neural network (DNN). |
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1. Nonnegative representation: V = [STFT(x)|2.
2. Structured model:

> Nonnegative matrix factorization (NMF).
> Deep neural network (DNN).
3. Estimation:

> minW’H D(V, WH)
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Source separation general framework
Transform

Filtering

Inverse transform
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1. Nonnegative representation: V = [STFT(x)|2.
2. Structured model:

> Nonnegative matrix factorization (NMF).

> Deep neural network (DNN).
3. Estimation:

activations

> minW’H D(V, WH)

V =~ WH

> ming L({V,}, ¢9(V))

4. Set of nonnegative masks M;.
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5. Synthesis: §; = STFT }(M; ® X).
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Mask

£Sj = ZX — lIssues in sound quality when sources overlap in the TF domain.
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The phase problem
Wiener filter
A V.
o) |
Zk:l Vi

Source STFT (Estimated) Mixture STFT

.

Mask

£Sj = ZX — lIssues in sound quality when sources overlap in the TF domain.

Inconsistency

I(Y) — ||Y _ g(Y)| |2 Complex matrices CF*T
G=STFToSTFT !

> Griffin-Lim (GL): minimization of Z.

Consisteitt STF

> Extension to source separation.

> Combination with Wiener filtering.



The phase problem

Comparative study [ICASSP 15]

> Room for improvement for phase recovery.
> Test alternative separation methods accounting for the phase:

> Consistency-based.
> Signal model-based.

> The most promising uses a signal model for structuring the phase / STFT.

P. Magron, R. Badeau, B. David, “Phase recovery in NMF for audio source separation: an insightful benchmark”, Proc. IEEE International
Conference on Audio, Speech and Signal Processing (ICASSP), April 2015.




The phase problem

Comparative study [ICASSP 15]

> Room for improvement for phase recovery.
> Test alternative separation methods accounting for the phase:

> Consistency-based.
> Signal model-based.

> The most promising uses a signal model for structuring the phase / STFT.

My approach

> Leveraging model-based phase properties in source separation.
> A phase-aware probabilistic framework.

> Joint estimation of magnitude and phase.

P. Magron, R. Badeau, B. David, “Phase recovery in NMF for audio source separation: an insightful benchmark”, Proc. IEEE International
Conference on Audio, Speech and Signal Processing (ICASSP), April 2015.




Model-based phase recovery



Sinusoidal phase model

Sinusoids — Linear phase
For a mixture of sinusoids, the phase is:

normalized frequency
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Sinusoidal phase model

Sinusoids — Linear phase

For a mixture of sinusoids, the phase is:

Ufe = pfe—1+ 2m Vft
it /
normalized frequency
|
t

Recursive estimation in each time frame:
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Sinusoidal phase model

Restoration of piano pieces:
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Better performance than the consistency-based GL algorithm.
But overall low SDR: error propagates over time frames.

P. Magron, R. Badeau, B. David, “Phase reconstruction of spectrograms with linear unwrapping: application to audio signal restoration”,
Proc. European Signal Processing Conference (EUSIPCO), August 2015. o
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> Better performance than the consistency-based GL algorithm.
> But overall low SDR: error propagates over time frames.

Applications

Original

> Click removal [EUSIPCO 15].

> Source separation.

Frequency (Hz)

P. Magron, R. Badeau, B. David, “Phase reconstruction of spectrograms with linear unwrapping: application to audio signal restoration”,
Proc. European Signal Processing Conference (EUSIPCO), August 2015.




Why treating attacks?

> Perceptive quality of the sound.

> Initialize the sinusoidal model.

P. Magron, R. Badeau, B. David, “Phase reconstruction of spectrograms based on a model of repeated audio events”, Proc. IEEE Workshop
on Applications of Signal Processing to Audio and Acoustics (WASPAA), October 2015.

10



Repeating attacks

Why treating attacks?
> Perceptive quality of the sound. Repeating attacks — Phase invariant

Initialize the sinusoidal model. . ol 1l
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P. Magron, R. Badeau, B. David, “Phase reconstruction of spectrograms based on a model of repeated audio events”, Proc. IEEE Workshop
on Applications of Signal Processing to Audio and Acoustics (WASPAA), October 2015.
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Repeating attacks

Why treating attacks?

> Perceptlve quallty of the sound. Repeating attacks — Phase invariant
l

T — AT
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> Initialize the sinusoidal model. VJM

Model within onset frames: 7} i

Hft = ) + M f
—~ =~

invariant  offset

Incorporation in a mixture model

> Estimation with coordinate descente.

> Slight improvement over using the mixture's phase [WASPAA 15].

P. Magron, R. Badeau, B. David, “Phase reconstruction of spectrograms based on a model of repeated audio events”, Proc. IEEE Workshop
on Applications of Signal Processing to Audio and Acoustics (WASPAA), October 2015.
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Source separation iterative algorithm

Problem
J
min || X — Vet||?
in X~ 3 Vye|
j=1
Optimization

> Use a phase model for initialization.
> Auxiliary function method: iterative procedure.
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Optimization

> Use a phase model for initialization.
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Source separation iterative algorithm

Problem
J
min || X — Vet||?
in X~ 3 Vye|
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Optimization

> Use a phase model for initialization.
> Auxiliary function method: iterative procedure.
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Source separation iterative algorithm

Initialization impact (DSD100 dataset):

SDR SIR SAR E e
Mixture 7.5 13.7 8.9
Random 95 228 9.7

Sinusoidal | 13.6 31.0 13.7

P. Magron, R. Badeau, B. David, “Model-based STFT phase recovery for audio source separation”, IEEE/ACM Transactions on Audio,
Speech and Language Processing, vol. 26, no. 6, pp. 1095-1105, June 2018.
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Source separation iterative algorithm

Initialization impact (DSD100 dataset):

SDR SIR SAR oo
Mixture 7.5 13.7 8.9 A
Random 95 228 9.7 -

Sinusoidal | 13.6 31.0 13.7

Comparison with Wiener filters:

SDR(dB) SIR(dB)  SAR(dB)
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P. Magron, R. Badeau, B. David, “Model-based STFT phase recovery for audio source separation”, IEEE/ACM Transactions on Audio,
Speech and Language Processing, vol. 26, no. 6, pp. 1095-1105, June 2018.
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How to re-introduce consistency?

Time-domain formulation

T”}‘Z IISTFT(E) - VI[P s . > & =%
R j

P. Magron, T. Virtanen, “Online spectrogram inversion for audio source separation”, IEEE Signal Processing Letters, vol. 27, pp.
306-310, January 2020.
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How to re-introduce consistency?

ime-domain formulation
minE STFT(3)| — V)| s. t. E § =X
i) : Ii &)l il : j

> Auxiliary function method: the (well-known) MISI algorithm, but
convergence-guaranteed.

STFT frame

Online implementation

Mog. prase

. . . . . STFT
> Useful for real-time applications (hearing aids): msicatons
for a latency of 16 ms, same results as the
iDFT and
offline counterpart. snioirs | ’wa.::aggg
> Allows initialization with the sinusoidal phase: verep ”’
dd |

better results in some cases. w_/‘

P. Magron, T. Virtanen, “Online spectrogram inversion for audio source separation”, IEEE Signal Processing Letters, vol. 27, pp.
306-310, January 2020.
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Alternative divergences

> Euclidean distance: not the most appropriate in audio.

> Popular alternative: the beta-divergences.

5=2 p=1 F=0
Euclidean Kullback-Leibler (KL) | Itakura-Saito (IS)
Emphasis on high- < In between — Scale invariance

energy components

P. Magron, P.-H. Vial, T. Oberlin, C. Févotte, “Phase recovery with Bregman divergences for audio source separation”, Proc. IEEE
International Conference on Audio, Speech and Signal Processing (ICASSP), June 2021.

P.-H. Vial, P. Magron, T. Oberlin, C. Févotte, “Phase retrieval with Bregman divergences and application to audio signal recovery”, IEEE
Journal of Selected Topics in Signal Processing, January 2021.
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Alternative divergences

> Euclidean distance: not the most appropriate in audio.

> Popular alternative: the beta-divergences.

5=2 p=1 F=0
Euclidean Kullback-Leibler (KL) | Itakura-Saito (IS)
Emphasis on high- < In between — Scale invariance

energy components

Phase retrieval with beta-divergences
rpir}1§ Ds(ISTFT(3)%, V) s. t. > & =%
Sj N .
J Jj

> Optimization with accelerated gradient descent or ADMM.

> Experimentally: alternative divergences (e.g., KL or 8 = 0.5) > Euclidean.

P. Magron, P.-H. Vial, T. Oberlin, C. Févotte, “Phase recovery with Bregman divergences for audio source separation”, Proc. IEEE

International Conference on Audio, Speech and Signal Processing (ICASSP), June 2021.
P.-H. Vial, P. Magron, T. Oberlin, C. Févotte, “Phase retrieval with Bregman divergences and application to audio signal recovery", IEEE

Journal of Selected Topics in Signal Processing, January 2021.
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Probabilistic phase modelling



Probabilistic framework

Why?

> Modeling uncertainty.
> Incorporating prior information.
> Obtaining estimators with nice statistical properties.

> Deriving inference schemes with convergence guarantees.
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Probabilistic framework

Why?

> Modeling uncertainty.
> Incorporating prior information.
> Obtaining estimators with nice statistical properties.

> Deriving inference schemes with convergence guarantees.
Traditionally

Circularly-symmetric (or isotropic) sources <= Uniform phase

= Phase-unaware estimators.

My approach
( A phase-aware probabilistic framework for source separation. )

15



Is the phase really uniform?

A simple example (piano piece), where the phase appears uniformly-distributed.

Spectrogram Phase Histogram
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But: is that consistent with, e.g., the sinusoidal model?
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A simple example (piano piece), where the phase appears uniformly-distributed.

Spectrogram Phase Histogram

But: is that consistent with, e.g., the sinusoidal model?

Interpretation

> The histogram validates an iid assumption on {¢r} :
¢f,+ ~ D and independent — D = Ujg o[

> This model only conveys a global information.
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Is the phase really uniform?

A simple example (piano piece), where the phase appears uniformly-distributed.

Spectrogram Phase Histogram

But: is that consistent with, e.g., the sinusoidal model?

Interpretation

> The histogram validates an iid assumption on {¢r} :
¢f,+ ~ D and independent — D = Ujg o[

> This model only conveys a global information.

What about the local structure of the phase?

16



Von Mises phase model

Von Mises distribution

~k=0
—k=1
or ~ VMg, k) = k=10
=
> pr,: = phase location. 2
> Kk = concentration (quantifies non-uniformity). e
m
0

2n

17



Von Mises phase model

Von Mises distribution

~k=0
or ~ VM(ps, k) - ity
=
> fif+ = phase location. E:
> Kk = concentration (quantifies non-uniformity). s
0 H 2n
)
Model

> fif,+ = sinusoidal phase.

> Center the phases: ¢ = ¢r: — ir¢

Distribution Uniform VM Centered VM
brr ~ U[o,zw[ b ~ VM(pr 1, k) pr e ~ VM(0, k)
iid v X 4
Local structure X v 4

17



Von Mises phase model [iwaenc 18]

Estimation of k (maximum likelihood):

3.5

1 :
o)~ FT 2 () :

e
|
|
|
¢ 25 _
I
2 I
|
|
1
bass

> Solved with fast numerical schemes.

1.5 k_%l — =

drums other  vocals

> K quantifies the “sinusoidality” of the

sources.

P. Magron, T. Virtanen, “On modeling the STFT phase of audio signals with the von Mises distribution”, Proc. International Workshop on
Acoustic Signal Enhancement (IWAENC), September 2018.
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Von Mises phase model [iwaENC 18]

Estimation of k (maximum likelihood):

I1 K 1
/ogﬁg = ;COSW&)

> Solved with fast numerical schemes.

> K quantifies the “sinusoidality” of the
sources.

Validation

> Both uniform and VM models are
statistically relevant.

> They convey different information about
the phase (global vs. local).

e
35 }
3b
¢ 25 _
I
2 I
|
150 1 -
- B T =
1
bass  drums other  vocals

Centered phase

Histogram

P. Magron, T. Virtanen, “On modeling the STFT phase of audio signals with the von Mises distribution”, Proc. International Workshop on

Acoustic Signal Enhancement (IWAENC), September 2018.
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Multiple sources model

In each TF bin, x = 37, 5.
: - . e (vog
Isotropic gaussian model: s; ~ Ng(m;, T;) with I; = | - .
G

> mj: mean (location) / 7;: variance (energy).

> ¢j: relation term, usually 0.
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Multiple sources model

In each TF bin, x = 37, 5.

Isotropic gaussian model: s; ~ Ng(mj,T;) with I'; = (Wj Cj).
G

> mj: mean (location) / 7;: variance (energy).
> ¢j: relation term, usually 0.
Polar coordinate equivalent model: s; = rjei¢f where:

> rj ~ R(v;) (Rayleigh magnitude).
> ¢j ~ U2 (uniform phase).

Naive idea

( Consider a VM phase instead — Phase-aware... but not tractable. )

19



Anisotropic Gaussian model

Isotropic Anisotropic Phase-aware  Tractable
Isotropic Gaussian X v
Rayleigh + von Mises v X
Anisotropic Gaussian v v
. i C
with I; = YJ J

20



Anisotropic Gaussian model

Isotropic Anisotropic Phase-aware  Tractable
Isotropic Gaussian X v
Rayleigh + von Mises v X
Anisotropic Gaussian v v

Source model: s; ~ Ng(m;,T;) with T; =

VM(NJ'>HJ') ’— N(mj,rj)

i Moments mj !

R(vj) ~——f> rjel¢j — " > Sj
C;
J

Rayleigh+Von Mises Anisotropic Gaussian
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Anisotropic Gaussian model

Isotropic Anisotropic Phase-aware  Tractable
Isotropic Gaussian X v
Rayleigh + von Mises v X
Anisotropic Gaussian v v

. i C
Source model: s; ~ Ng(m;,T;) with T; = YJ 1
G
VM (5, 55) ’— N(mj,T;)

4 Moments mj Y

R(vj) — rje‘¢j —_— Sj
Gj

Rayleigh+Von Mises Anisotropic Gaussian

> Parameters: v; (energy), p; (phase location), £ (non-uniformity).

20



Anisotropic Wiener filter

> Posterior mean of the sources: anisotropic Wiener filter [ICASSP 17].

> Performance (oracle separation results):

SDR SIR SAR
Wiener 8.5 191 9.1
Anisotropic Wiener 9.7 219 10.1

Main message

> Including phase information in the filter improves the separation quality.

> Potential of a phase-aware statistical framework.

P. Magron, R. Badeau, B. David, “Phase-dependent anisotropic Gaussian model for audio source separation”, Proc. IEEE International
Conference on Audio, Speech and Signal Processing (ICASSP), March 2017.

21



Again... consisten

Problem

> The (anisotropic) Wiener filter produces inconsistent matrices.

P. Magron, J. Le Roux, T. Virtanen, “Consistent anisotropic Wiener filtering for audio source separation”, Proc. IEEE Workshop on
Applications of Signal Processing to Audio and Acoustics (WASPAA), October 2017.
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Again... consistency?

Problem
> The (anisotropic) Wiener filter produces inconsistent matrices.
Consistent anisotropic Wiener [WASPAA 17]
> Consider the loss function:
{posterior distribution of the (anistropic) sources}+{consistency constraint}

> Minimization with preconditioned conjugate gradient descent.

P. Magron, J. Le Roux, T. Virtanen, “Consistent anisotropic Wiener filtering for audio source separation”, Proc. IEEE Workshop on
Applications of Signal Processing to Audio and Acoustics (WASPAA), October 2017.
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Again... consistency?

Problem
> The (anisotropic) Wiener filter produces inconsistent matrices.
Consistent anisotropic Wiener [WASPAA 17]
> Consider the loss function:
{posterior distribution of the (anistropic) sources}+{consistency constraint}

> Minimization with preconditioned conjugate gradient descent.

Sinusoidal model  Consistent

Wiener X X
cw X v
AW v X

CAW v v

P. Magron, J. Le Roux, T. Virtanen, “Consistent anisotropic Wiener filtering for audio source separation”, Proc. IEEE Workshop on
Applications of Signal Processing to Audio and Acoustics (WASPAA), October 2017.
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Joint estimation of magnitude
and phase



Realistic source separation

Goal: estimate the magnitude and the phase of the sources.

> Needs an additional spectrogram-like model and estimation technique.

activations K o 1O
, ol 1o o
‘ NN L N o P A
V ~WH = A —

= =3 | o O |O

atoms T BB Ee—
EE == 9 Q@
e o O

Approaches

> Two-stage: first estimate the magnitude, and then recover the phase.

> One-stage: jointly estimate the magnitude and the phase.

23



Two-stage approaches

NMF 4+ phase recovery

> Phase recovery induces a slight improvement (interference reduction).

P. Magron, K. Drossos, S. |. Mimilakis, T. Virtanen, “Reducing interference with phase recovery in DNN-based monaural singing voice
separation”, Proc. Interspeech. September 2018.

K. Drossos, P. Magron, S. I. Mimilakis, T. Virtanen, “Harmonic-percussive source separation with deep neural networks and phase recovery”,
Proc. International Workshop on Acoustic Signal Enhancement (IWAENC), September 2018.
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Two-stage approaches

NMF 4+ phase recovery

> Phase recovery induces a slight improvement (interference reduction).

DNN 4 phase recovery [Interspeech 18, iWAENC 18]

[Hiaswerions |
The Masker, Caleulation

> More significant results (DNNs > NMF).

> Phase recovery makes sense on top of good magnitude estimates.

P. Magron, K. Drossos, S. |. Mimilakis, T. Virtanen, “Reducing interference with phase recovery in DNN-based monaural singing voice

separation”, Proc. Interspeech. September 2018.

K. Drossos, P. Magron, S. |. Mimilakis, T. Virtanen, “Harmonic-percussive source separation with deep neural networks and phase recovery”,
Proc. International Workshop on Acoustic Signal Enhancement (IWAENC), September 2018.
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Complex NMF

Baseline NMF [X| ~ V = WH

> Assumes the additivity of the sources’ magnitudes — phase?

P. Magron, R. Badeau, B. David, “Complex NMF under phase constraints based on signal modeling: application to audio source separation”,
Proc. IEEE International Conference on Audio, Speech and Signal Processing (ICASSP), March 2016.
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Complex NMF

Baseline NMF [X| ~ V = WH
> Assumes the additivity of the sources’ magnitudes — phase?
Complex NMF X &= X = Zj[WjHj]ei“i
——
NMF

> Regularize the phases with model-based properties [ICASSP 16]:

min [[X — )A(Hz + ASPCSP(H) + AsinCsin(p) + Arepcrep(ﬂy P, m)
—_— Y

sparsity sinusoidal phase repeating attacks

> Optimization: coordinate descent or auxiliary function method.

> Tuning Asin and Arp: trade-off between interference and artifact reduction.

P. Magron, R. Badeau, B. David, “Complex NMF under phase constraints based on signal modeling: application to audio source separation” ,
Proc. IEEE International Conference on Audio, Speech and Signal Processing (ICASSP), March 2016.
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Complex ISNMF

Hard to extend complex NMF to non-Euclidean metrics (e.g., beta-divergences).

P. Magron, T. Virtanen, “Complex ISNMF: a phase-aware model for monaural audio source separation”, IEEE/ACM Transactions on Audio,
Speech and Language , vol. 27, no. 1, pp. 20-31, January 2019.
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Probabilistic view

(Real) Gaussian r~N(m,a?) m = wh Euclidean NMF
Poisson r~P(v) v =wh KLNMF
Isotropic Gaussian ~ x ~ Ng(0,v21)  v2 =wh ISNMF

Isotropic Gaussian  x ~ Ng(m,o?l)  m = whel# Complex NMF

P. Magron, T. Virtanen, “Complex ISNMF: a phase-aware model for monaural audio source separation”, IEEE/ACM Transactions on Audio,
Speech and Language , vol. 27, no. 1, pp. 20-31, January 2019.

26



Complex ISNMF

Hard to extend complex NMF to non-Euclidean metrics (e.g., beta-divergences).

Probabilistic view

(Real) Gaussian r~N(m,a?) m = wh Euclidean NMF
Poisson r~P(v) v =wh KLNMF
Isotropic Gaussian ~ x ~ Ng(0,v21)  v2 =wh ISNMF

Isotropic Gaussian  x ~ Ng(m,o?l)  m = whel# Complex NMF

Complex ISNMF [TASLP 19]

> Anisotropic Gaussian model (NMF variance). — | ]
> Markov chain prior on the phase parameter. l
(Wl
> Estimation: EM algorithm. mh ﬁ
> Better results than Complex NMF and ISNMF. ‘ f
t — t+1

P. Magron, T. Virtanen, “Complex ISNMF: a phase-aware model for monaural audio source separation”, IEEE/ACM Transactions on Audio,
Speech and Language , vol. 27, no. 1, pp. 20-31, January 2019.
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Acoustic scene classification



Domain adaptation for acoustic scene classification

5 [ [ B
Problem Q»M«» 2 »
. . . &N 9 e 19 ©
> Classify an audio segment into classes. M ol o
oo
> Mismatch between recording conditions. gegM
O-wemi~H 5 B -0
o O O [
o O

K. Drossos, P. Magron, T. Virtanen, “Unsupervised adversarial domain adaptation based on the Wasserstein distance for acoustic scene
classification”, Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), October 2019
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Domain adaptation for acoustic scene classification
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> Classify an audio segment into classes. M
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Domain adaptation [WASPAA 19]
> Source and target domain data —
same latent distribution.

> Wasserstein GAN: minimize scene
classification error / maximize
domain classification error.

K. Drossos, P. Magron, T. Virtanen, “Unsupervised adversarial domain adaptation based on the Wasserstein distance for acoustic scene
classification”, Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), October 2019
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Domain adaptation for acoustic scene classification
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[WASPAA 19]
> Source and target domain data —
same latent distribution.

> Wasserstein GAN: minimize scene
classification error / maximize
domain classification error.

K. Drossos, P. Magron, T. Virtanen, “Unsupervised adversarial domain adaptation based on the Wasserstein distance for acoustic scene
classification”, Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), October 2019
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Music recommendation



Content-aware music recommendation

Collaborative filtering with matrix factorization: Y =~ WH.

> Y /W / H = interactions / users preferences / songs attributes.

> Cannot recommend novel items: cold-start problem.

P. Magron, C. Févotte, “Leveraging the structure of musical preference in content-aware music recommendation”, Proc. IEEE International

Conference on Audio, Speech and Signal Processing (ICASSP), June 2021.
P. Magron, C. Févotte, “Neural content-aware collaborative filtering for cold-start music recommendation”, to be submitted in the ACM

Transactions on Information Systems.
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Collaborative filtering with matrix factorization: Y =~ WH.

> Y /W / H = interactions / users preferences / songs attributes.

> Cannot recommend novel items: cold-start problem.
Content-aware recommendation
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P. Magron, C. Févotte, “Leveraging the structure of musical preference in content-aware music recommendation”, Proc. IEEE International
Conference on Audio, Speech and Signal Processing (ICASSP), June 2021.
P. Magron, C. Févotte, “Neural content-aware collaborative filtering for cold-start music recommendation”, to be submitted in the ACM
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Content-aware music recommendation

Collaborative filtering with matrix factorization: Y ~ WH.

> Y /W / H = interactions / users preferences / songs attributes.
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P. Magron, C. Févotte, “Leveraging the structure of musical preference in content-aware music recommendation”, Proc. IEEE International
Conference on Audio, Speech and Signal Processing (ICASSP), June 2021.

P. Magron, C. Févotte, “Neural content-aware collaborative filtering for cold-start music recommendation”, to be submitted in the ACM
Transactions on Information Systems.
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Thanks!

> Webpage: https://magronp.github.io/
> Code: https://github.com/magronp
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