Complex-valued and hybrid models for audio processing

MULTISPEECH team seminar - INRIA Nancy Grand-Est

Paul Magron

IRIT, Université de Toulouse, CNRS - Signal & Communications team

Academic background

- PhD Télécom ParisTech (R. Badeau, B. David) 2013 2016 Phase recovery based on signal modeling: application to audio source separation.
- Postdoc Tampere University (T. Virtanen) 2017 2019
 Probabilistic phase modelling and real-time sound source separation.

Content-aware music recommendation.

Publications since 2015:

▷ 4 journal articles.

- ▷ 2 IEEE Transactions on Audio, Speech, and Language Processing
- ▷ 1 IEEE Signal Processing Letters
- ▷ 1 IEEE Journal of Selected Topics in Signal Processing

 \triangleright 19 conference articles.

▷ 1 best paper award (iWAENC 2018)

 \triangleright 13 co-authors from 7 institutions.

- ▷ Telecommunications: speech coding and synthesis.
- ▷ Medical devices: hearing aids.
- ▷ Educational softwares: language/music learning.
- > Music information retrieval, music streaming.

- ▷ Telecommunications: speech coding and synthesis.
- ▷ Medical devices: hearing aids.
- ▷ Educational softwares: language/music learning.
- > Music information retrieval, music streaming.

Main applications (of my work)

Source separation

- ▷ Telecommunications: speech coding and synthesis.
- ▷ Medical devices: hearing aids.
- ▷ Educational softwares: language/music learning.
- > Music information retrieval, music streaming.

Main applications (of my work)

Source separation

Acoustic scene analysis

- ▷ Telecommunications: speech coding and synthesis.
- ▷ Medical devices: hearing aids.
- ▷ Educational softwares: language/music learning.
- ▷ Music information retrieval, music streaming.

Main applications (of my work)

Source separation

Acoustic scene analysis

Music recommendation

Audio content is usually composed of several constitutive sounds:

- \triangleright One or several speakers + noise.
- ▷ Environmental / domestic sounds.
- ▷ Musical instruments.

Audio content is usually composed of several constitutive sounds:

- \triangleright One or several speakers + noise.
- ▷ Environmental / domestic sounds.
- ▷ Musical instruments.

Source separation = recovering the sources from the mixture.

- \triangleright Automatic speech recognition \rightarrow clean speech vs. noise.
- \triangleright Rhythm analysis \rightarrow drums vs. harmonic instruments.
- \triangleright Stationary / transient decomposition \rightarrow time-stretching.

Audio content is usually composed of several constitutive sounds:

- \triangleright One or several speakers + noise.
- ▷ Environmental / domestic sounds.
- ▷ Musical instruments.

 $\mathbf{X} = \sum_{j=1}^{J} \mathbf{S}_{j}$

Source separation = recovering the sources from the mixture.

- \triangleright Automatic speech recognition \rightarrow clean speech vs. noise.
- \triangleright Rhythm analysis \rightarrow drums vs. harmonic instruments.
- \triangleright Stationary / transient decomposition \rightarrow time-stretching.

Time-frequency separation = acts on the short-time Fourier transform (STFT).

1. Nonnegative representation: $V = |STFT(x)|^2$.

- 1. Nonnegative representation: $V = |STFT(x)|^2$.
- 2. Structured model:
 - ▷ Nonnegative matrix factorization (NMF).
 - ▷ Deep neural network (DNN).

- 1. Nonnegative representation: $V = |STFT(x)|^2$.
- 2. Structured model:
 - ▷ Nonnegative matrix factorization (NMF).
 - ▷ Deep neural network (DNN).
- 3. Estimation:
 - $\triangleright \min_{W,H} \mathcal{D}(V,WH)$
 - $\triangleright \min_{\theta} \mathcal{L}(\{\mathsf{V}_j\}, \phi_{\theta}(\mathsf{V}))$

- 1. Nonnegative representation: $V = |STFT(x)|^2$.
- 2. Structured model:
 - ▷ Nonnegative matrix factorization (NMF).
 - \triangleright Deep neural network (DNN).
- 3. Estimation:
 - $\triangleright \min_{W,H} \mathcal{D}(V,WH)$
 - $\triangleright \min_{\theta} \mathcal{L}(\{V_j\}, \phi_{\theta}(V))$
- 4. Set of nonnegative masks M_j.

- 1. Nonnegative representation: $V = |STFT(x)|^2$.
- 2. Structured model:
 - ▷ Nonnegative matrix factorization (NMF).
 - ▷ Deep neural network (DNN).
- 3. Estimation:
 - $\triangleright \min_{W,H} \mathcal{D}(V,WH)$
 - $\triangleright \min_{\theta} \mathcal{L}(\{V_j\}, \phi_{\theta}(V))$
- 4. Set of nonnegative masks M_j.
- **5.** Synthesis: $\tilde{s}_j = STFT^{-1}(M_j \odot X)$.

The phase problem

Wiener filter

 $\angle \bm{S}_j = \angle \bm{X} \rightarrow$ Issues in sound quality when sources overlap in the TF domain.

The phase problem

Wiener filter

 $\angle S_j = \angle X \rightarrow$ Issues in sound quality when sources overlap in the TF domain. Inconsistency

$$\mathcal{I}(\mathsf{Y}) = ||\mathsf{Y} - \mathcal{G}(\mathsf{Y})||^2$$

 $\mathcal{G} = \mathsf{STFT} \circ \mathsf{STFT}^{-1}$

The phase problem

Wiener filter

 $\angle S_j = \angle X \rightarrow$ Issues in sound quality when sources overlap in the TF domain. Inconsistency

$$egin{aligned} \mathcal{I}(\mathsf{Y}) &= ||\mathsf{Y} - \mathcal{G}(\mathsf{Y})||^2 \ \mathcal{G} &= \mathsf{STFT} \circ \mathsf{STFT}^{-1} \end{aligned}$$

- \triangleright Griffin-Lim (GL): minimization of \mathcal{I} .
- ▷ Extension to source separation.
- ▷ Combination with Wiener filtering.

Comparative study [ICASSP 15]

- ▷ Room for improvement for phase recovery.
- ▷ Test alternative separation methods accounting for the phase:
 - ▷ Consistency-based.
 - ▷ Signal model-based.
- $\triangleright\,$ The most promising uses a signal model for structuring the phase / STFT.

P. Magron, R. Badeau, B. David, "Phase recovery in NMF for audio source separation: an insightful benchmark", Proc. IEEE International *Conference on Audio, Speech and Signal Processing (ICASSP)*, April 2015.

Comparative study [ICASSP 15]

- ▷ Room for improvement for phase recovery.
- ▷ Test alternative separation methods accounting for the phase:
 - ▷ Consistency-based.
 - ▷ Signal model-based.
- $\triangleright\,$ The most promising uses a signal model for structuring the phase / STFT.

My approach

- \triangleright Leveraging model-based phase properties in source separation.
- > A phase-aware probabilistic framework.
- ▷ Joint estimation of magnitude and phase.

P. Magron, R. Badeau, B. David, "Phase recovery in NMF for audio source separation: an insightful benchmark", Proc. IEEE International Conference on Audio, Speech and Signal Processing (ICASSP), April 2015.

Model-based phase recovery

For a mixture of sinusoids, the phase is:

$$\mu_{f,t} = \mu_{f,t-1} + 2\pi$$

 $\nu_{f,t}$

normalized frequency

For a mixture of sinusoids, the phase is:

$$\mu_{f,t} = \mu_{f,t-1} + 2\pi$$

 $\underbrace{\nu_{f,t}}_{\text{normalized frequency}}$

Recursive estimation in each time frame:

Sinusoidal phase model

Restoration of piano pieces:

- ▷ Better performance than the consistency-based GL algorithm.
- ▷ But overall low SDR: error propagates over time frames.

P. Magron, R. Badeau, B. David, "Phase reconstruction of spectrograms with linear unwrapping: application to audio signal restoration", *Proc. European Signal Processing Conference (EUSIPCO)*, August 2015.

Sinusoidal phase model

Restoration of piano pieces:

- ▷ Better performance than the consistency-based GL algorithm.
- ▷ But overall low SDR: error propagates over time frames.

Applications

- ▷ Click removal [EUSIPCO 15].
- ▷ Source separation.

P. Magron, R. Badeau, B. David, "Phase reconstruction of spectrograms with linear unwrapping: application to audio signal restoration", Proc. European Signal Processing Conference (EUSIPCO), August 2015.

Repeating attacks

Why treating attacks?

- ▷ Perceptive quality of the sound.
- ▷ Initialize the sinusoidal model.

P. Magron, R. Badeau, B. David, "Phase reconstruction of spectrograms based on a model of repeated audio events", Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), October 2015.

Repeating attacks

Why treating attacks?

- \triangleright Perceptive quality of the sound.
- ▷ Initialize the sinusoidal model.

Model within onset frames:

P. Magron, R. Badeau, B. David, "Phase reconstruction of spectrograms based on a model of repeated audio events", Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), October 2015.

Repeating attacks

Why treating attacks?

- \triangleright Perceptive quality of the sound.
- ▷ Initialize the sinusoidal model.

Model within onset frames:

Incorporation in a mixture model

- ▷ Estimation with coordinate descente.
- ▷ Slight improvement over using the mixture's phase [WASPAA 15].

P. Magron, R. Badeau, B. David, "Phase reconstruction of spectrograms based on a model of repeated audio events", Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), October 2015.

Problem

$$\min_{\boldsymbol{\mu}} ||\mathsf{X} - \sum_{j=1}^{J} \mathsf{V}_{j} e^{\mathrm{i} \boldsymbol{\mu}_{j}} ||^{2}$$

Problem

$$\min_{\boldsymbol{\mu}} ||\mathsf{X} - \sum_{j=1}^{J} \mathsf{V}_j e^{\mathrm{i}\boldsymbol{\mu}_j}||^2$$

Optimization

 \triangleright Use a phase model for initialization.

Problem

$$\min_{\boldsymbol{\mu}} ||\mathsf{X} - \sum_{j=1}^{J} \mathsf{V}_{j} e^{\mathrm{i}\boldsymbol{\mu}_{j}}||^{2}$$

- $\triangleright~$ Use a phase model for initialization.
- ▷ Auxiliary function method: iterative procedure.

Problem

$$\min_{\boldsymbol{\mu}} ||\mathsf{X} - \sum_{j=1}^{J} \mathsf{V}_j e^{\mathrm{i}\boldsymbol{\mu}_j}||^2$$

- $\triangleright~$ Use a phase model for initialization.
- ▷ Auxiliary function method: iterative procedure.

Problem

$$\min_{\boldsymbol{\mu}} ||\mathsf{X} - \sum_{j=1}^{J} \mathsf{V}_j e^{\mathrm{i}\boldsymbol{\mu}_j}||^2$$

- \triangleright Use a phase model for initialization.
- ▷ Auxiliary function method: iterative procedure.

Problem

$$\min_{\boldsymbol{\mu}} ||\mathsf{X} - \sum_{j=1}^{J} \mathsf{V}_{j} e^{\mathrm{i}\boldsymbol{\mu}_{j}}||^{2}$$

- \triangleright Use a phase model for initialization.
- ▷ Auxiliary function method: iterative procedure.

Initialization impact (DSD100 dataset):

	SDR	SIR	SAR
Mixture	7.5	13.7	8.9
Random	9.5	22.8	9.7
Sinusoidal	13.6	31.0	13.7

P. Magron, R. Badeau, B. David, "Model-based STFT phase recovery for audio source separation", IEEE/ACM Transactions on Audio, Speech and Language Processing, vol. 26, no. 6, pp. 1095–1105, June 2018.
Source separation iterative algorithm

Initialization impact (DSD100 dataset):

	SDR	SIR	SAR
Mixture	7.5	13.7	8.9
Random	9.5	22.8	9.7
Sinusoidal	13.6	31.0	13.7

Comparison with Wiener filters:

P. Magron, R. Badeau, B. David, "Model-based STFT phase recovery for audio source separation", IEEE/ACM Transactions on Audio, Speech and Language Processing, vol. 26, no. 6, pp. 1095–1105, June 2018.

Time-domain formulation

$$\min_{\{\tilde{\mathbf{s}}_j\}} \sum_j |||\mathsf{STFT}(\tilde{\mathbf{s}}_j)| - \mathsf{V}_j||^2 \text{ s. t. } \sum_j \tilde{\mathbf{s}}_j = \tilde{\mathbf{x}}$$

P. Magron, T. Virtanen, "Online spectrogram inversion for audio source separation", *IEEE Signal Processing Letters*, vol. 27, pp. 306–310, January 2020.

Time-domain formulation

$$\min_{\{\tilde{\mathbf{s}}_j\}} \sum_j |||\mathsf{STFT}(\tilde{\mathbf{s}}_j)| - \mathsf{V}_j||^2 \text{ s. t. } \sum_j \tilde{\mathbf{s}}_j = \tilde{\mathsf{x}}$$

▷ Auxiliary function method: the (well-known) MISI algorithm, but convergence-guaranteed.

Online implementation

- Useful for real-time applications (hearing aids): for a latency of 16 ms, same results as the offline counterpart.
- Allows initialization with the sinusoidal phase: better results in some cases.

P. Magron, T. Virtanen, "Online spectrogram inversion for audio source separation", *IEEE Signal Processing Letters*, vol. 27, pp. 306–310, January 2020.

- ▷ Euclidean distance: not the most appropriate in audio.
- ▷ Popular alternative: the beta-divergences.

$\beta = 2$	eta=1	$\beta = 0$
Euclidean	Kullback-Leibler (KL)	Itakura-Saito (IS)
Emphasis on high-	$\leftarrow \text{ In between } \rightarrow$	Scale invariance
energy components		

P. Magron, P.-H. Vial, T. Oberlin, C. Févotte, "Phase recovery with Bregman divergences for audio source separation", Proc. IEEE International Conference on Audio, Speech and Signal Processing (ICASSP), June 2021.

P.-H. Vial, <u>P. Magron</u>, T. Oberlin, C. Févotte, "Phase retrieval with Bregman divergences and application to audio signal recovery", *IEEE Journal of Selected Topics in Signal Processing*, January 2021.

- ▷ Euclidean distance: not the most appropriate in audio.
- ▷ Popular alternative: the beta-divergences.

$\beta = 2$	$\beta = 1$	$\beta = 0$
Euclidean	Kullback-Leibler (KL)	Itakura-Saito (IS)
Emphasis on high-	$\leftarrow In \; between \; \rightarrow \;$	Scale invariance
energy components		

Phase retrieval with beta-divergences

$$\min_{\{\tilde{\mathbf{s}}_j\}}\sum_j D_\beta(|\mathsf{STFT}(\tilde{\mathbf{s}}_j)|^d,\mathsf{V}_j) \text{ s. t. } \sum_j \tilde{\mathbf{s}}_j = \tilde{\mathsf{x}}$$

- > Optimization with accelerated gradient descent or ADMM.
- \triangleright Experimentally: alternative divergences (e.g., KL or $\beta = 0.5$) > Euclidean.

P. Magron, P.-H. Vial, T. Oberlin, C. Févotte, "Phase recovery with Bregman divergences for audio source separation", Proc. IEEE International Conference on Audio, Speech and Signal Processing (ICASSP), June 2021.

P.-H. Vial, P. Magron, T. Oberlin, C. Févotte, "Phase retrieval with Bregman divergences and application to audio signal recovery", IEEE Journal of Selected Topics in Signal Processing, January 2021.

Probabilistic phase modelling

Why?

- ▷ Modeling uncertainty.
- ▷ Incorporating prior information.
- > Obtaining estimators with nice statistical properties.
- ▷ Deriving inference schemes with convergence guarantees.

Why?

- ▷ Modeling uncertainty.
- ▷ Incorporating prior information.
- > Obtaining estimators with nice statistical properties.
- ▷ Deriving inference schemes with convergence guarantees.

Traditionally

Circularly-symmetric (or **isotropic**) sources \iff Uniform phase

 \Rightarrow Phase-unaware estimators.

Why?

- ▷ Modeling uncertainty.
- ▷ Incorporating prior information.
- > Obtaining estimators with nice statistical properties.
- ▷ Deriving inference schemes with convergence guarantees.

Traditionally

Circularly-symmetric (or **isotropic**) sources \iff Uniform phase \Rightarrow Phase-unaware estimators.

My approach

A phase-aware probabilistic framework for source separation.

A simple example (piano piece), where the phase appears uniformly-distributed.

A simple example (piano piece), where the phase appears uniformly-distributed.

But: is that consistent with, e.g., the sinusoidal model?

A simple example (piano piece), where the phase appears uniformly-distributed.

But: is that consistent with, e.g., the sinusoidal model? Interpretation

 \triangleright The histogram validates an iid assumption on $\{\phi_{f,t}\}$:

$$\phi_{f,t} \sim \mathcal{D}$$
 and independent $\ o \mathcal{D} = \mathcal{U}_{[0,2\pi[}$

▷ This model only conveys a **global** information.

A simple example (piano piece), where the phase appears uniformly-distributed.

But: is that consistent with, e.g., the sinusoidal model? Interpretation

 \triangleright The histogram validates an iid assumption on $\{\phi_{f,t}\}$:

$$\phi_{f,t} \sim \mathcal{D}$$
 and independent $\ o \mathcal{D} = \mathcal{U}_{[0,2\pi[}$

▷ This model only conveys a **global** information.

What about the local structure of the phase?

Von Mises distribution

 $\phi_{ft} \sim \mathcal{VM}(\mu_{ft},\kappa)$

 $\triangleright \mu_{f,t} = \text{phase location.}$

 $\triangleright \kappa =$ concentration (quantifies non-uniformity).

Von Mises distribution

 $\phi_{ft} \sim \mathcal{VM}(\mu_{ft},\kappa)$

 $\triangleright \mu_{f,t} = \text{phase location.}$

 $\triangleright \kappa =$ concentration (quantifies non-uniformity).

Model

- $\triangleright \mu_{f,t} =$ sinusoidal phase.
- \triangleright Center the phases: $\psi_{f,t} = \phi_{f,t} \mu_{f,t}$

Distribution	Uniform	VM	Centered VM
	$\phi_{f,t} \sim \mathcal{U}_{[0,2\pi[}$	$\phi_{\textit{ft}} \sim \mathcal{VM}(\mu_{f,t},\kappa)$	$\psi_{f,t} \sim \mathcal{VM}(0,\kappa)$
iid	1	×	✓
Local structure	×	✓	✓

Von Mises phase model [iWAENC 18]

Estimation of κ (maximum likelihood):

$$\frac{l_1(\kappa)}{l_0(\kappa)} = \frac{1}{FT} \sum_{f,t} \cos(\psi_{ft})$$

- > Solved with fast numerical schemes.
- $\triangleright \kappa$ quantifies the "sinusoidality" of the sources.

P. Magron, T. Virtanen, "On modeling the STFT phase of audio signals with the von Mises distribution", Proc. International Workshop on Acoustic Signal Enhancement (IWAENC), September 2018.

Von Mises phase model [iWAENC 18]

Estimation of κ (maximum likelihood):

$$\frac{l_1(\kappa)}{l_0(\kappa)} = \frac{1}{FT} \sum_{f,t} \cos(\psi_{ft})$$

- > Solved with fast numerical schemes.
- $\triangleright \kappa$ quantifies the "sinusoidality" of the sources.

Validation

- Both uniform and VM models are statistically relevant.
- ▷ They convey different information about the phase (global vs. local).

P. Magron, T. Virtanen, "On modeling the STFT phase of audio signals with the von Mises distribution", Proc. International Workshop on Acoustic Signal Enhancement (IWAENC), September 2018.

In each TF bin, $x = \sum_{j=1}^{J} s_j$.

Isotropic gaussian model: $s_j \sim \mathcal{N}_{\mathbb{C}}(m_j, \Gamma_j)$ with $\Gamma_j = \begin{pmatrix} \gamma_j & c_j \\ \bar{c}_j & \gamma_j \end{pmatrix}$.

 \triangleright *m_j*: mean (location) / γ_j : variance (energy).

 \triangleright c_i : relation term, usually 0.

In each TF bin, $x = \sum_{j=1}^{J} s_j$.

Isotropic gaussian model: $s_j \sim \mathcal{N}_{\mathbb{C}}(m_j, \Gamma_j)$ with $\Gamma_j = \begin{pmatrix} \gamma_j & c_j \\ \overline{c_j} & \gamma_j \end{pmatrix}$.

- \triangleright *m_j*: mean (location) / γ_j : variance (energy).
- \triangleright c_j: relation term, usually 0.

Polar coordinate equivalent model: $s_j = r_j e^{i\phi_j}$ where:

 $\triangleright r_j \sim \mathcal{R}(v_j) \text{ (Rayleigh magnitude).}$ $\triangleright \phi_j \sim \mathcal{U}_{[0,2\pi[} \text{ (uniform phase).}$

In each TF bin, $x = \sum_{j=1}^{J} s_j$.

Isotropic gaussian model: $s_j \sim \mathcal{N}_{\mathbb{C}}(m_j, \Gamma_j)$ with $\Gamma_j = \begin{pmatrix} \gamma_j & c_j \\ \overline{c_j} & \gamma_j \end{pmatrix}$.

- \triangleright *m_j*: mean (location) / γ_j : variance (energy).
- \triangleright c_j: relation term, usually 0.

Polar coordinate equivalent model: $s_j = r_j e^{i\phi_j}$ where:

 $\triangleright r_j \sim \mathcal{R}(v_j) \text{ (Rayleigh magnitude).}$ $\triangleright \phi_j \sim \mathcal{U}_{[0,2\pi[} \text{ (uniform phase).}$

Consider a VM phase instead \rightarrow Phase-aware

In each TF bin, $x = \sum_{j=1}^{J} s_j$.

Isotropic gaussian model: $s_j \sim \mathcal{N}_{\mathbb{C}}(m_j, \Gamma_j)$ with $\Gamma_j = \begin{pmatrix} \gamma_j & c_j \\ \overline{c_j} & \gamma_j \end{pmatrix}$.

- \triangleright *m_j*: mean (location) / γ_j : variance (energy).
- \triangleright c_j: relation term, usually 0.

Polar coordinate equivalent model: $s_j = r_j e^{i\phi_j}$ where:

 $\triangleright r_j \sim \mathcal{R}(v_j) \text{ (Rayleigh magnitude).}$ $\triangleright \phi_j \sim \mathcal{U}_{[0,2\pi[} \text{ (uniform phase).}$

Naive idea

Consider a VM phase instead \rightarrow Phase-aware... but not tractable.

Anisotropic Gaussian model

Source model:
$$s_j \sim \mathcal{N}_{\mathbb{C}}(m_j, \Gamma_j)$$
 with $\Gamma_j = egin{pmatrix} \gamma_j & c_j \ ar{c}_j & \gamma_j \end{pmatrix}$.

Source model: $s_j \sim \mathcal{N}_{\mathbb{C}}(m_j, \Gamma_j)$ with $\Gamma_j = \begin{pmatrix} \gamma_j & c_j \\ \overline{c_j} & \gamma_j \end{pmatrix}$.

Source model: $s_j \sim \mathcal{N}_{\mathbb{C}}(m_j, \Gamma_j)$ with $\Gamma_j = \begin{pmatrix} \gamma_j & c_j \\ \overline{c}_j & \gamma_j \end{pmatrix}$.

 \triangleright Parameters: v_j (energy), μ_j (phase location), κ (non-uniformity).

- ▷ Posterior mean of the sources: anisotropic Wiener filter [ICASSP 17].
- ▷ Performance (oracle separation results):

	SDR	SIR	SAR
Wiener	8.5	19.1	9.1
Anisotropic Wiener	9.7	21.9	10.1

Main message

▷ Including phase information in the filter improves the separation quality.

▷ Potential of a phase-aware statistical framework.

P. Magron, R. Badeau, B. David, "Phase-dependent anisotropic Gaussian model for audio source separation", Proc. IEEE International Conference on Audio, Speech and Signal Processing (ICASSP), March 2017.

Again... consistency?

Problem

▷ The (anisotropic) Wiener filter produces inconsistent matrices.

P. Magron, J. Le Roux, T. Virtanen, "Consistent anisotropic Wiener filtering for audio source separation", Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), October 2017.

Again... consistency?

Problem

▷ The (anisotropic) Wiener filter produces inconsistent matrices.

Consistent anisotropic Wiener [WASPAA 17]

 \triangleright Consider the loss function:

{posterior distribution of the (anistropic) sources}+{consistency constraint}

▷ Minimization with preconditioned conjugate gradient descent.

P. Magron, J. Le Roux, T. Virtanen, "Consistent anisotropic Wiener filtering for audio source separation", Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), October 2017.

Again... consistency?

Problem

▷ The (anisotropic) Wiener filter produces inconsistent matrices.

Consistent anisotropic Wiener [WASPAA 17]

 \triangleright Consider the loss function:

{posterior distribution of the (anistropic) sources}+{consistency constraint}

▷ Minimization with preconditioned conjugate gradient descent.

P. Magron, J. Le Roux, T. Virtanen, "Consistent anisotropic Wiener filtering for audio source separation", Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), October 2017.

Joint estimation of magnitude and phase

Goal: estimate the magnitude **and** the phase of the sources.

▷ Needs an additional spectrogram-like model and estimation technique.

Approaches

- \triangleright Two-stage: first estimate the magnitude, and then recover the phase.
- \triangleright One-stage: jointly estimate the magnitude and the phase.

Two-stage approaches

NMF + phase recovery

▷ Phase recovery induces a slight improvement (interference reduction).

P. Magron, K. Drossos, S. I. Mimilakis, T. Virtanen, "Reducing interference with phase recovery in DNN-based monaural singing voice separation", *Proc. Interspeech.* September 2018.

K. Drossos, P. Magron, S. I. Mimilakis, T. Virtanen, "Harmonic-percussive source separation with deep neural networks and phase recovery", Proc. International Workshop on Acoustic Signal Enhancement (IWAENC), September 2018.

Two-stage approaches

NMF + phase recovery

▷ Phase recovery induces a slight improvement (interference reduction).

DNN + phase recovery [Interspeech 18, iWAENC 18]

- \triangleright More significant results (DNNs > NMF).
- ▷ Phase recovery makes sense on top of good magnitude estimates.

K. Drossos, P. Magron, S. I. Mimilakis, T. Virtanen, "Harmonic-percussive source separation with deep neural networks and phase recovery", Proc. International Workshop on Acoustic Signal Enhancement (IWAENC), September 2018.

P. Magron, K. Drossos, S. I. Mimilakis, T. Virtanen, "Reducing interference with phase recovery in DNN-based monaural singing voice separation", *Proc. Interspeech.* September 2018.

Complex NMF

Baseline NMF $|X| \approx \hat{V} = WH$

 \triangleright Assumes the additivity of the sources' magnitudes \rightarrow phase?

P. Magron, R. Badeau, B. David, "Complex NMF under phase constraints based on signal modeling: application to audio source separation", Proc. IEEE International Conference on Audio, Speech and Signal Processing (ICASSP), March 2016.

Baseline NMF $|X| \approx \hat{V} = WH$

 \triangleright Assumes the additivity of the sources' magnitudes \rightarrow phase?

Complex NMF
$$X \approx \hat{X} = \sum_{j} [\underbrace{W_{j}H_{j}}_{NMF}] e^{i\mu_{j}}$$

▷ Regularize the phases with model-based properties [ICASSP 16]:

$$\min ||X - \hat{X}||^2 + \underbrace{\lambda_{sp} \mathcal{C}_{sp}(H)}_{sparsity} + \underbrace{\lambda_{sin} \mathcal{C}_{sin}(\boldsymbol{\mu})}_{sinusoidal \ phase} + \underbrace{\lambda_{rep} \mathcal{C}_{rep}(\boldsymbol{\mu}, \boldsymbol{\psi}, \boldsymbol{\eta})}_{repeating \ attacks}$$

▷ Optimization: coordinate descent or auxiliary function method.

 \triangleright Tuning λ_{sin} and λ_{rep} : trade-off between interference and artifact reduction.

P. Magron, R. Badeau, B. David, "Complex NMF under phase constraints based on signal modeling: application to audio source separation", Proc. IEEE International Conference on Audio, Speech and Signal Processing (ICASSP), March 2016.

Complex ISNMF

Hard to extend complex NMF to non-Euclidean metrics (e.g., beta-divergences).

P. Magron, T. Virtanen, "Complex ISNMF: a phase-aware model for monaural audio source separation", IEEE/ACM Transactions on Audio, Speech and Language , vol. 27, no. 1, pp. 20–31, January 2019.

Complex ISNMF

Hard to extend complex NMF to non-Euclidean metrics (e.g., beta-divergences).

Probabilistic view

(Real) Gaussian	$r \sim \mathcal{N}(m, \sigma^2)$	m = wh	Euclidean NMF
Poisson	$r \sim \mathcal{P}(v)$	v = wh	KLNMF
Isotropic Gaussian	$x \sim \mathcal{N}_{\mathbb{C}}(0, v^2 I)$	$v^2 = wh$	ISNMF
Isotropic Gaussian	$x \sim \mathcal{N}_{\mathbb{C}}(m, \sigma^2 I)$	$\textit{m} = \textit{whe}^{\mathrm{i}\mu}$	Complex NMF

P. Magron, T. Virtanen, "Complex ISNMF: a phase-aware model for monaural audio source separation", IEEE/ACM Transactions on Audio, Speech and Language , vol. 27, no. 1, pp. 20–31, January 2019.
Complex ISNMF

Hard to extend complex NMF to non-Euclidean metrics (e.g., beta-divergences). Probabilistic view

(Real) Gaussian	$r \sim \mathcal{N}(m, \sigma^2)$	m = wh	Euclidean NMF
Poisson	$r \sim \mathcal{P}(v)$	v = wh	KLNMF
Isotropic Gaussian	$x \sim \mathcal{N}_{\mathbb{C}}(0, v^2 I)$	$v^2 = wh$	ISNMF
Isotropic Gaussian	$x \sim \mathcal{N}_{\mathbb{C}}(m, \sigma^2 I)$	$m = whe^{\mathrm{i}\mu}$	Complex NMF

Complex ISNMF [TASLP 19]

- > Anisotropic Gaussian model (NMF variance).
- \triangleright Markov chain prior on the phase parameter.
- ▷ Estimation: EM algorithm.
- ▷ Better results than Complex NMF and ISNMF.

P. Magron, T. Virtanen, "Complex ISNMF: a phase-aware model for monaural audio source separation", IEEE/ACM Transactions on Audio, Speech and Language , vol. 27, no. 1, pp. 20–31, January 2019.

Acoustic scene classification

Problem

- ▷ Classify an audio segment into classes.
- > Mismatch between recording conditions.

K. Drossos, P. Magron, T. Virtanen, "Unsupervised adversarial domain adaptation based on the Wasserstein distance for acoustic scene classification", Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), October 2019.

Domain adaptation for acoustic scene classification

Problem

- ▷ Classify an audio segment into classes.
- > Mismatch between recording conditions.

Domain adaptation [WASPAA 19]

- $\triangleright \text{ Source and target domain data} \rightarrow \text{ same latent distribution.}$
- Wasserstein GAN: minimize scene classification error / maximize domain classification error.

K. Drossos, <u>P. Magron</u>, T. Virtanen, "Unsupervised adversarial domain adaptation based on the Wasserstein distance for acoustic scene classification", *Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)*, October 2019.

Domain adaptation for acoustic scene classification

Problem

- ▷ Classify an audio segment into classes.
- > Mismatch between recording conditions.

Domain adaptation [WASPAA 19]

- $\triangleright \text{ Source and target domain data} \rightarrow \text{ same latent distribution.}$
- Wasserstein GAN: minimize scene classification error / maximize domain classification error.

K. Drossos, <u>P. Magron</u>, T. Virtanen, "Unsupervised adversarial domain adaptation based on the Wasserstein distance for acoustic scene classification", *Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)*, October 2019.

Music recommendation

- \triangleright Y / W / H = interactions / users preferences / songs attributes.
- ▷ Cannot recommend novel items: cold-start problem.

P. Magron, C. Févotte, "Leveraging the structure of musical preference in content-aware music recommendation", Proc. IEEE International Conference on Audio, Speech and Signal Processing (ICASSP), June 2021.

P. Magron, C. Févotte, "Neural content-aware collaborative filtering for cold-start music recommendation", to be submitted in the ACM Transactions on Information Systems.

- \triangleright Y / W / H = interactions / users preferences / songs attributes.
- ▷ Cannot recommend novel items: cold-start problem.

Content-aware recommendation

P. Magron, C. Févotte, "Neural content-aware collaborative filtering for cold-start music recommendation", to be submitted in the ACM Transactions on Information Systems.

P. Magron, C. Févotte, "Leveraging the structure of musical preference in content-aware music recommendation", Proc. IEEE International Conference on Audio, Speech and Signal Processing (ICASSP), June 2021.

- \triangleright Y / W / H = interactions / users preferences / songs attributes.
- ▷ Cannot recommend novel items: cold-start problem.

Content-aware recommendation

P. Magron, C. Févotte, "Leveraging the structure of musical preference in content-aware music recommendation", Proc. IEEE International Conference on Audio, Speech and Signal Processing (ICASSP), June 2021.

P. Magron, C. Févotte, "Neural content-aware collaborative filtering for cold-start music recommendation", to be submitted in the ACM Transactions on Information Systems.

- \triangleright Y / W / H = interactions / users preferences / songs attributes.
- ▷ Cannot recommend novel items: cold-start problem.

Content-aware recommendation

000000 0000 000

P. Magron, C. Févotte, "Leveraging the structure of musical preference in content-aware music recommendation", Proc. IEEE International Conference on Audio. Speech and Signal Processing (ICASSP), June 2021.

P. Magron, C. Févotte, "Neural content-aware collaborative filtering for cold-start music recommendation", to be submitted in the ACM Transactions on Information Systems.

Thanks!

- > Webpage: https://magronp.github.io/
- > Code: https://github.com/magronp