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> Automatic speech recognition (clean speech vs. noise).
> Rhythm analysis (drums vs. harmonic instruments).

> Time-stretching (transients vs. partials).

Time-frequency separation = acts on the Audio signal
. . M STFT
short-time Fourier transform (STFT).
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Nonnegative masking: /S; = ZX.
X lssues in sound quality when sources overlap. e
X Inconsistency: S; ¢ STFT(RYN).

Multiple Input Spectrogram Inversion (MISI) [Gunawan, 2010]

> Extends the Griffin-Lim algorithm to multiple signals by solving:
J

J
min V. — |STFT(s;)|||? s.t. S; = X.
ni ;H i— | (s)Il > s

j=1
v/~ Performance is improved over masking.
X Euclidean distance is not the most appropriate in audio.

Goal
( Extend MISI to non-quadratic losses for source separation. )

Gunawan and Sen, lterative phase estimation for the synthesis of separated sources from single-channel mixtures, /EEE SPL, 2010.
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Problem setting

Bregman divergences
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> The generating function v determines the divergence.
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Kullback-Leibler (8 = 1) and ltakura-Saito (8 = 0) [Hennequin, 2011]
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> The generating function v determines the divergence.

> Encompass the S-divergences, with particular cases: Euclidean (5 = 2),
Kullback-Leibler (8 = 1) and ltakura-Saito (8 = 0) [Hennequin, 2011]

Problem formulation: mmZ] 1Cj(sj) s.t. Zj 18 =X

> Accounting for the non-symmetry of Bregman divergences:

Ci(s;) = Dy(V, | ISTFT(s;)[?) or Dy(|ISTFT(s;)|*| V;)

“right” problem “left” problem

> d =1 (V; are magnitudes) or d =2 (V; are power spectrograms).

Hennequin et al., Beta-divergence as a subclass of Breg divergence, |[EEE SPL, 2011.



Projected gradient desce

J J
min Ci(s; s.t. S;i =X
Y G st X

"7 Data fitting $ ,

Mixing constraint

> The set defined by the mixing constraint is convex.
> The data fitting terms are independent from each other.

> Projected gradient descent:

yj < s; — uVC;(s;)
] J
sj<—yj+j X—Zyi
i=1

> Compute the gradient VC; using the chain rule [Vial, 2021].

Vial et al., “Phase retrieval with Bregman divergences and application to audio signal recovery”, IEEE JSTSP, 2021.
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Algorithm overview

Initialization: Wiener-like mask: s; = STFTil(V;—/d © e4X)
Update rules
STFT S; =STFT(s;)

Compute the gradient G, = "(|S;]9) ® (|S;]¢ — V) (right)
G = v'(I8;|7) —'(V;) (left)

Gradient descent Y, =S, —pdx8S; o8] ?20G;
Inverse STFT y; = STFT (Y};)
Mixing S; =Y; + % (X - Zj:l Yi)

MISI is a particular case (quadratic loss, d = 1, and p = 1):

S;

Y, =V, 0
! N



Experiments



Task: speech enhancement (J = 2), 100 mixtures:

> Clean speech from the VoiceBank dataset.

> Real-life noises from the DEMAND dataset (living room, bus, and public
square noises).

> Mixtures at various input SNR (—10, 0, and 10 dB).
Magnitude estimation

> Open-Unmix (a freely available pretrained Bi-LSTM network).

> The network is trained on different speakers and noises.
Split

> 50 mixtures for validation (tuning the step size ).

> 50 mixtures for testing (MISI and the proposed algorithm, 5 iterations).



Signal-to-distortion ratio (improvement over the baseline amplitude mask):

iSNR = 10 dB iSNR = 0 dB iSNR = -10 dB

12 —%— right, d=1
—e— right, d=2
- left, d=1
—o— left, d=2
=== MISI

0.4 0.4 0.4 ; é )

SDRi (dB)

> The proposed method outperforms MISI when d = 2:

> At high/moderate input SNR when 3 > 1.
> At low input SNR for all 5 and the “left” problem.

> Performance peak around 8 = 1.25, close to Kullback-Leibler (8 = 1).

> Results depend on the type of noise.



Conclusion

Alternative divergences have some potential for phase retrieval in audio
source separation from highly corrupted spectrograms

Perspectives

> Alternative optimization schemes (majorization-minimization, ADMM).

> Inclusion within deep learning (e.g., with deep unfolding) for end-to-end
separation.

@ https://github.com/magronp/bregmisi
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