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Phase retrieval

Problem statement

Recover a signal x? ∈ CL from nonnegative measurements r ∈ RK such
that

r ≈ |Ax?|d

A ∈ CK×L: measurement operator.

d = 1 (magnitude) or 2 (power).

Common approach: nonconvex optimization

min
x∈CL

E(x) := ‖r− |Ax|d‖22

Algorithms: gradient descent, alternating projections,
majorization-minimization, ADMM...

Recovery up to ambiguities.
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PR for audio signal recovery

Audio processing

Phase retrieval
Estimation

Short-time Fourier transform (STFT)

A: STFT operator.

AH: inverse STFT under duality conditions.
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A classic algorithm: Griffin-Lim algorithm (GLA)
[Griffin and Lim, 1984]

Alternating projections

Magnitude constraint:
A =

{
x̃ ∈ CK | |x̃| = r

}
I PA(x̃) = r� x̃

|x̃|

Consistency constraint:
C = Im(A)

I PC(x̃) = AAH x̃

Griffin-Lim Algorithm (d = 1)

Initialize: φ0, x̃0 = r� φ0

Iterate: x̃t+1 = PC(PA(x̃t))

Converges to a critical point of E.
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PR with Bregman divergences

Optimization problem

min
x∈CL

J(x) := Dψ(r | |Ax|d)
“right”

or Dψ(|Ax|d | r)
“left”

Bregman divergences

With ψ strictly-convex and continuously-differentiable scalar function,

Dψ(y | z) :=
∑
k

[
ψ(yk)− ψ(zk)− ψ′(zk)(yk − zk)

]
Motivations

Unifying framework.

Encompasses Quadratic, Kullback-Leibler, Itakura-Saito and
β-divergences.

Good performance in audio, e.g. in NMF.
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Gradient descent and acceleration

Gradient expression

∇J(x) = d

2
AH

[
|Ax|d−2 � (Ax)� z

]
z = ψ′′(|Ax|d)� (|Ax|d − r)

“right”

or ψ′(|Ax|d)− ψ′(r)
“left”

Accelerated gradient descent

Iterate:

yt+1 = xt − µ∇J(xt)
xt+1 = yt+1 + γ(yt+1 − yt)

µ: step-size.

γ: acceleration parameter.

Special cases

GLA: d = 1, µ = 1, γ = 0 and
quadratic loss.

Wirtinger Flow [Candès et al.,
2015]: d = 2, γ = 0 and
quadratic loss.
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Experimental protocol

Data

10 speech samples (TIMIT).

Scenarios

Exact spectrograms.

Modified spectrograms: simulation of non-consistency by adding
Gaussian white noise and Wiener filtering.

Evaluation

Short-term objective intelligibility (STOI): assessing perceptual
intelligibility in the time-domain.

Signal-to-noise ratio (SNR) improvement: assessing quality in the
time-domain.
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Results: STOI
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Results: SNR improvement
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Phase retrieval with Bregman divergences

Conclusion

New formulation of PR with Bregman divergences.

Optimization with gradient descent.

Promising performances in the presence of high degradation.

Extended work

ADMM algorithm.

Long paper under revision (available on arXiv).

Thank you for your attention!
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