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Phase retrieval

Problem statement

Recover a signal x* € CL from nonnegative measurements r € R¥ such
that

r~ |Ax*|?
o A € CE*L: measurement operator.

e d =1 (magnitude) or 2 (power).
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Phase retrieval

Problem statement

Recover a signal x* € CL from nonnegative measurements r € R¥ such
that

r~ |Ax*|?
o A € CE*L: measurement operator.
e d =1 (magnitude) or 2 (power).

Common approach: nonconvex optimization

min  E(x) := ||r — |Ax|?||2
min B(x) = |[r - |Ax{|3

@ Algorithms: gradient descent, alternating projections,
majorization-minimization, ADMM...

@ Recovery up to ambiguities.
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PR for audio signal recovery
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Short-time Fourier transform (STFT)
o A: STFT operator.
o AH: inverse STFT under duality conditions.
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A classic algorithm: Griffin-Lim algorithm (GLA)

[Griffin and Lim, 1984]

Alternating projections
@ Magnitude constraint:

(CK A={xeCkK||x|=r}
PA(i):r@%

|x

@ Consistency constraint:

‘ C = Im(A)
. 'Pc(f():AAH)N(

Griffin-Lim Algorithm (d = 1)
o Initialize: ¢, Xg =1 ® ¢y
o lterate: X;11 = Pc(PA(X))

Converges to a critical point of F.
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PR with Bregman divergences

Optimization problem

min J(x) := Dy(r|[Ax|?) or Dy(|Ax|?|r)
“right” “left”

Bregman divergences

With ¢ strictly-convex and continuously-differentiable scalar function,

Dy(ylz) :=>_ [$(ur) — ¥(2k) — ¥ (z) (U — 2)]

k

Motivations
@ Unifying framework.

@ Encompasses Quadratic, Kullback-Leibler, Itakura-Saito and
[-divergences.

@ Good performance in audio, e.g. in NMF.
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Gradient descent and acceleration

Gradient expression
VJ(x) = g AH [|Ax|d—2 © (Ax) ® z]

z=¢"(|Ax|) © (|Ax|? — 1) or ¢/(|Ax|?) —¢/(r)

“right” “left”
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Gradient descent and acceleration

Gradient expression
VJ(x) = g AH [|Axyd—2 © (Ax) ® z]

z=¢"(|Ax|) © (|Ax|? — 1) or ¢/(|Ax|?) —¢/(r)

“right” “left”

Accelerated gradient descent
Iterate:

Yir1 =Xt — pVJ(x¢)

X141 = Yer1 +7(Yer1 — Yt)

@ L step-size.

@ ~: acceleration parameter.

4
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Gradient descent and acceleration

Gradient expression
VJ(x) = g AH [\AxyH © (Ax) ® z]

z=¢"(|Ax|) © (|Ax|? — 1) or ¢/(|Ax|?) —¢/(r)
“right” “left”

Accelerated gradient descent
Iterate: Special cases
e GLA:d=1,u=1,v=0and

Yi+1 = x¢ — pVJI(x) quadratic loss.

X1 = Yeb1 +Y(Yer1 — Vo) e Wirtinger Flow [Candes et al.,

2015]: d =2, y =0 and
@ L step-size. quadratic loss.
@ ~: acceleration parameter.

v
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Experimental protocol

Data
10 speech samples (TIMIT).

Scenarios

@ Exact spectrograms.

@ Modified spectrograms: simulation of non-consistency by adding
Gaussian white noise and Wiener filtering.
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Experimental protocol

Data
10 speech samples (TIMIT).

Scenarios
@ Exact spectrograms.

@ Modified spectrograms: simulation of non-consistency by adding
Gaussian white noise and Wiener filtering.

Evaluation

@ Short-term objective intelligibility (STOI): assessing perceptual
intelligibility in the time-domain.

@ Signal-to-noise ratio (SNR) improvement: assessing quality in the
time-domain.
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Results: STOI
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Results: SNR improvement
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Phase retrieval with Bregman divergences

Conclusion
@ New formulation of PR with Bregman divergences.
o Optimization with gradient descent.

@ Promising performances in the presence of high degradation.

PH. Vial (CNRS, Univ. Toulouse) PR with Bregman divergences 10/10



Phase retrieval with Bregman divergences

Conclusion
@ New formulation of PR with Bregman divergences.
o Optimization with gradient descent.

@ Promising performances in the presence of high degradation.

Extended work
o ADMM algorithm.

@ Long paper under revision (available on arXiv).

Thank you for your attention!
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