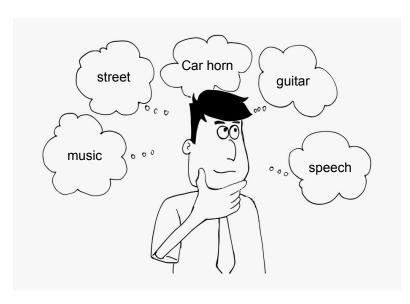
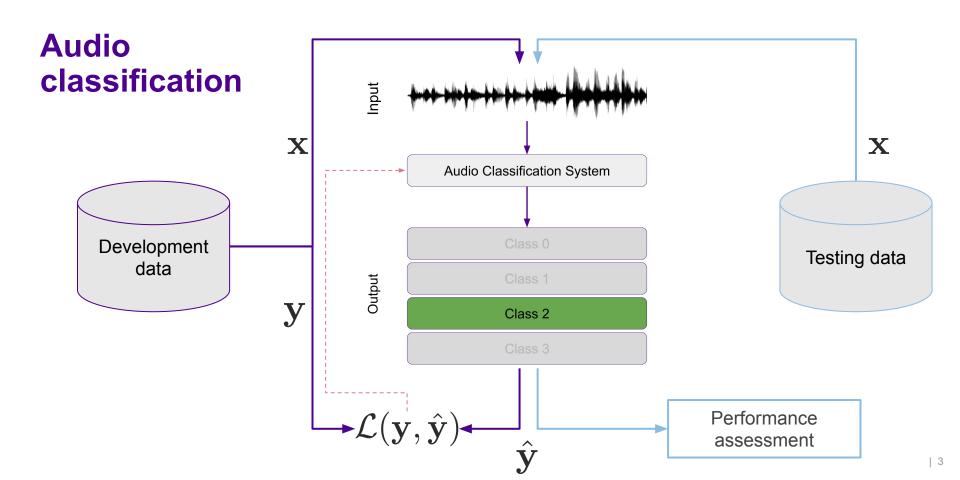


Unsupervised Adversarial Domain Adaptation Based On The Wasserstein Distance For Acoustic Scene Classification

K. Drossos, P. Magron, T. Virtanen Audio Research Group, Tampere University

Audio classification - Data collection

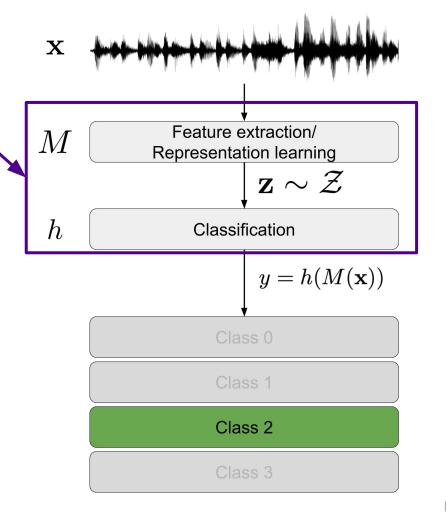




Human annotation

Audio signals

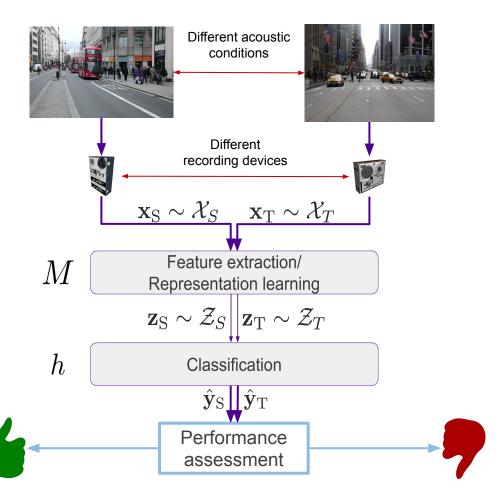
Audio Classification System



- Feature extractor M
 - Learned representation z

Audio classification

system


- Classifier h
- Optimized on training data
 - $\mathbf{x}_S \sim \mathcal{X}_S$
- Assess performance on testing data
 - $\mathbf{x}_T \sim \mathcal{X}_T$

Mismatching conditions

- Mismatch between \mathcal{X}_S and $\mathcal{X}_T \rightarrow$ poor performance of h
- Promising tackling way → domain adaptation

Some definitions

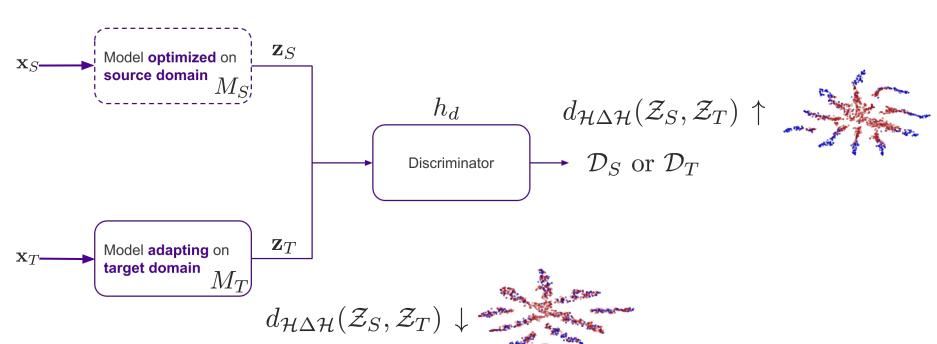
- A domain $\, \mathcal{D} = \langle \mathcal{Z}, f
 angle \,$
 - A distribution $\mathcal{Z} \to \mathbf{z} \sim \mathcal{Z}$
 - A labeling process $f: \mathbf{z} \mapsto y, \ y \to \text{ground truth label(s)}$
- Two domains
 - Source → optimization on
 - Target → adaptation on
- Average disagreement of h and f is $\epsilon(h,f) = \mathbb{E}_{\mathbf{z}}[\mathcal{L}(h(\mathbf{z}),f(\mathbf{z})]$
 - Source domain $o \mathcal{D}_S = \langle \mathcal{Z}_S, f_S
 angle, \,\, \epsilon_S(h,f_S)$
 - Target domain $o \mathcal{D}_T = \langle \mathcal{Z}_T, f_T
 angle$, $\, \epsilon_T(h, f_T)$

Domain adaptation (DA)

Feature extraction/ Representation learning $\mathbf{z}_{\mathrm{S}} \sim \mathcal{Z}_{S} | \mathbf{z}_{\mathrm{T}} \sim \mathcal{Z}_{T}$

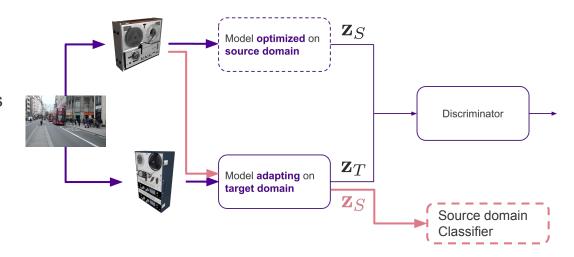
Classification

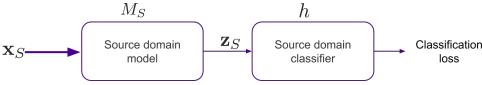
- If \mathcal{Z}_S and \mathcal{Z}_T are close $o \epsilon_S$ and ϵ_T will be close
 - $\mathcal{H}\Delta\mathcal{H}$ distance o discrepancy between \mathcal{Z}_S and \mathcal{Z}_T


•
$$d_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{Z}_S, \mathcal{Z}_T) = 2 \sup_{h,h'} |P_{\mathbf{z}\sim\mathcal{Z}_S}[h(\mathbf{z}) \neq h'(\mathbf{z})] - P_{\mathbf{z}\sim\mathcal{Z}_T}[h(\mathbf{z}) \neq h'(\mathbf{z})]|$$

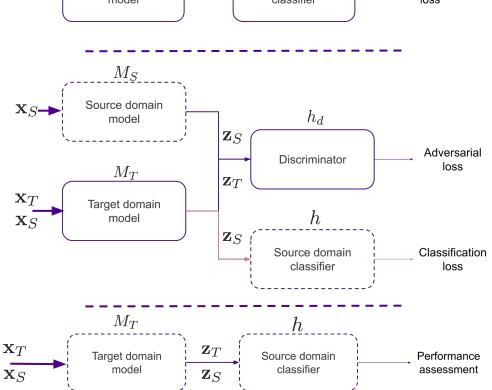
- Use $\mathcal{H}\Delta\mathcal{H}$ to upper bound the error on \mathcal{D}_T
 - $\epsilon_T(h, f_T) \le \epsilon_S(h, f_S) + \frac{1}{2} d_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{Z}_S, \mathcal{Z}_T) + \lambda$
- Goal of DA \rightarrow Having a model that yields low ϵ_S , adapt and yield low ϵ_T
 - No labels from \mathcal{D}_T , unsupervised
 - Some labels from \mathcal{D}_T , semi-supervised

$$\lambda = \epsilon_S(h^*, f_S) + \epsilon_T(h^*, f_T)$$
$$h^* = \underset{h}{\operatorname{argmin}} (\epsilon_S(h, f_S) + \epsilon_T(h, f_T))$$

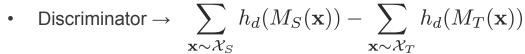

Adversarial DA

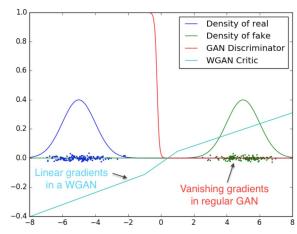

Proposed method overview

- Target problem
 - Acoustic scene classification
 - Mismatched recording devices
- Proposed solution
 - Adversarial unsupervised DA
- Key points
 - Wasserstein distance
 - Extra learning signal



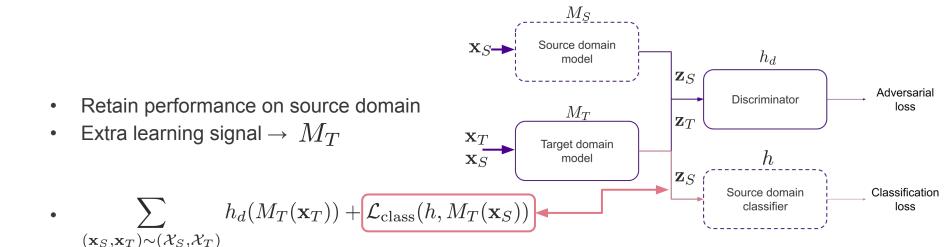
Method details


- Step 1 ightarrow Optimize on \mathcal{D}_S
 - Yielding model M_S and classifier \hbar
 - Typical classification task
- Step 2 ightarrow Adapt to \mathcal{D}_T
 - Initialize M_T to M_S
 - Adapt M_T
 - Adversarial learning based on WGAN
- Step 3 ightarrow Test on \mathcal{D}_T
 - ullet Use M_T and h



Adaptation details - Target domain

- Previous approach → typical GAN
 - Jensen–Shannon divergence minimization
- Training/Optimization problems
 - When discriminator is not fooled
 - When densities are away
- Wasserstein distance
 - Iterative minimization of

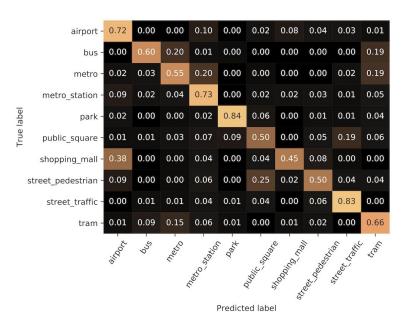


• Target model
$$\rightarrow \sum_{(\mathbf{x}_S, \mathbf{x}_T) \sim (\mathcal{X}_S, \mathcal{X}_T)} h_d(M_T(\mathbf{x}_T)) + \mathcal{L}_{\mathrm{class}}(h, M_T(\mathbf{x}_S))$$

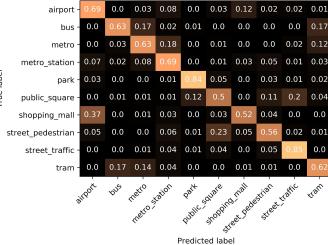
Adaptation details - Source domain

Evaluation details - process

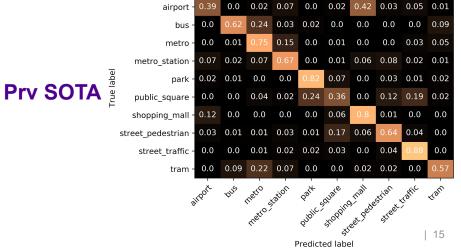
- Source domain → professional recording device
- Target domain → consumer recording devices
 - Synchronized recordings
 - Freely available dataset → DCASE 2018
- No pre-training $ightarrow M_S$ from previous SOTA method
 - M_S is available online (link in the paper)
 - Previous SOTA → adversarial DA with typical GAN setting
- Input log mel-band energies → output acoustic scene label

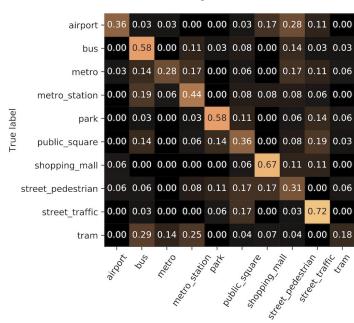

Evaluation details - model

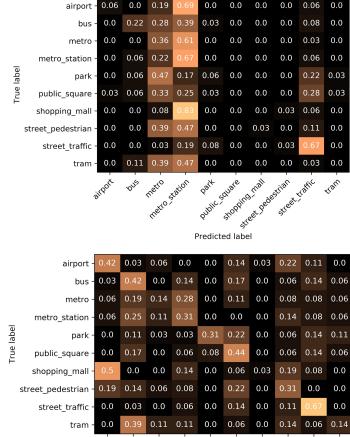
- Model → CNN based → available online (link in the paper)
 - Two CNN blocks (CNN, batch norm, max pooling, ReLU)
 - Two CNNs + ReLU
 - One CNN block
- Acoustic scene classifier
 - Two Linear layers + ReLU
- Domain classifier
 - Three CNN blocks



Results - source


Proposed




Results - target

Proposed

Predicted label

Non-adapted model

Prv SOTA Page and Provided Pro

Predicted label

| 16

Results - mean accuracy

	Non-adapted	Previous SOTA	Proposed
Source domain	0.65	0.65	0.64
Target domain	0.20	0.32	0.45

Conclusions and future research

- First approach for unsupervised DA for general audio with WGAN
 - Superpassed previous SOTA by 13% (mean accuracy)
- Expand unsupervised DA method for machine listening
- Future research:
 - Usage of bigger datasets
 - Multi-label problems
 - Sound event detection → releasing novel dataset: VOICe

Reproducibility

- Binary files
 - Models
 - Dataset

Code

FOSS DL Framework

Thank you!

Questions?

