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Harmonic/Percussive Source Separation (HPSS)

I Separate percussive (e.g.
drum, percussion) from
harmonic (e.g. guitar,
piano, singing voice)
components.

Mixture

Harmonic Percussive

I Applications: rhythm analysis, augmented mixing,
time-stretching, etc.

Contributions

I We propose a novel HPSS method, based on two
components.

1. A recently proposed deep neural network (DNN) method
for monaural music source separation [1].

2. A recently introduced algorithm for phase recovery [2]

I Reproducible research→ Source code available, results
on freely available dataset.

Proposed method

A two-stage approach based on DNNs and phase
recovery

1. A DNN for estimating the percussive spectrogram [1].

. Input → the magnitude spectrogram of the mixture.

. Output → the magnitude spectrogram of the percussive
component.

. We estimate harmonic components by spectral
subtraction.

2. Time-domain signal reconstruction, using either:

. The phase of the mixture, or

. An iterative algorithm for improved phase recovery [2].

Magnitude estimation: MaD TwinNet

A two-step monaural source separation system [1].

I Based on denoizing auto encoders framework (DAEs).

I First applies a time-frequency mask, then a time-frequency
denoizing filter.

I Takes into account long temporal dependencies through
TwinNet regularization.

Phase recovery: PU-iter

Sinusoidal phase
I The harmonic source is modeled as a sum of sinusoids.

I Explicit phase relationship between successive time frames:

φharmo
f ,t = φharmo

f ,t−1 + 2πlνf ,t

Iterative procedure [2]

I Minimizes the mixing error;

I Initialized with the
mixture’s phase (percussive
part) or sinusoidal phase
(harmonic part):

I Does not modify the target
magnitudes (= MaD
TwinNet estimates).
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Training & Evaluation

I Demixing secret dataset 100 (DSD100)→ 100 audio
mixtures and their isolated sources.

I Two di�erent STFT se�ings:

1. One in favor of MaD TwinNet (worked be�er).

2. One in favor of the phase recovery algorithm.

I Compared against Kernel Additive Model (KAM) [3].

I Separation quality measured with the signal to: artifacts
ratio (SAR), interference ratio (SIR), distortion ratio (SDR).

Objective results

Conclusions & future work

I Supervised HPSS based on deep learning and phase
recovery.

I MaD TwinNet and phase recovery improves over KAM.

I Future work

. Joint magnitude/phase recovery.

. Phase recovery based on deep learning.
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https://github.com/dr-costas/mad-twinnet & https://github.com/magronp/phase-hpss http://arg.cs.tut.fi/demo/hpss-madtwinnet


