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Audio source separation
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Estimate constitutive sources that form a mixture;
Applications: speech enhancement, augmented musical mixing...

Challenges: Reduction of interference and artifacts.
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General framework

In the STFT domain: X =} S;.

Nonnegative Model / Filtering /
representation estimation phase recovery

|

= Nonnegative representation: magnitude/power spectrogram;
[
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General framework

In the STFT domain: X =3/ 8.

Nonnegative Model / Filtering /
representation estimation phase recovery

Nonnegative representation: magnitude/power spectrogram;
Spectrogram model: KAM, NMF, DNNs...

Complex-valued STFTs retrieval: Wiener-like filtering...
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Nonnegative matrix factorization

Find a factorization of a nonnegative matrix V (e.g., a spectrogram):
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NMF - beta-divergences

Estimation of NMF:
min D(V, WH)
W.H

Popular choices for D are the beta-divergences Dg:

=2 =1 p=0
Euclidean Kullback-Leibler (KL) | ltakura-Saito (IS)
distance divergence divergence
Emphasis on high- < In between — Scale invariance
energy components

Optimization techniques (heuristic approach,
majorize-minimization...) — multiplicative updates rules.
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NMF - Wiener filtering

Mixture STFT

R W.H. A
Sj = ey S —— = O] X
k=1 WiHy

~ J -
Source STFT (Estimated)
Mask

P-source = P-mixture.
@ Issues in sound quality when sources overlap in the TF domain:

Mixture  Original  Oracle Wiener
w w w
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Complex NMF

Directly models the complex-valued STFTs:

X = Z‘ W,H; \®

NMFmagnltude Phase

€

=

Estimated by minimizing DEUC(X,X).
© Allows to incorporate phase constraints;

@ Not straightforward to extend it to other beta-divergences.
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Complex NMF

Directly models the complex-valued STFTs:

gy e

X = E‘ W,H, ‘@ i l
~ )

NMFmagmtude Phase

Estimated by minimizing DEUC(X,X).
© Allows to incorporate phase constraints;

@ Not straightforward to extend it to other beta-divergences.

— A probabilistic model in which complex NMF can be extended
to any beta-divergence.
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Gaussian model

Mixture in each TF bin:

J
xr = E Sj
=1
Gaussian sources:

s; ~ N(0,T;) with T; = ('_“ Cj)
G
m y; = variance — energy of the source.

B ¢; = relation term — non-uniformity of the phase.
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Isotropic Gaussian sources

Traditionally, circularly-symmetric (=isotropic) sources:
¢; = 0 < uniform phase.

NMF variance: v; = W;H,;.

Estimation:

maximum likelihood < min Djs(|X|®?, WH)

— ISNMF model.
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Anisotropic Gaussian model

Here, anisotropic sources:
¢j # 0 < non-uniform phase.
The variance / relation terms are:
2
7; = (1= A°)W;H;
Cj = ijHj6i2¢j

¢; = phase location parameter.
A/p = functions of k, quantify the non-uniformity of the phase.
k=0—> vj = [WjHj} and Ccj = 0 — ISNMF
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Anisotropic Gaussian model

Imaginary part
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Inference

The likelihood is not tractable — Expectation-maximization (EM).
Maximize a lower bound @ of the likelihood.
Alternate between:
E-step: compute @ given the current parameter estimates.

M-step: maximize () to update the parameters.
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Phase-corrected posterior power

The EM functional rewrites:

J J
Q- ZogWH Z s(P;, W,H,)

with:
P; o< Epost (s5'T; 's;) >0
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Phase-corrected posterior power
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with:

P; o< Epost (s5'T; 's;) >0

P; is phase-aware;
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Phase-corrected posterior power

The EM functional rewrites:

J J
Q- ZogWH Z s(P;, W,H,)

with:

P; o< Epost (s5'T; 's;) >0

P; is phase-aware;

=0 Pj =Eps (si's;) = posterior power of ;.
P; = phase-corrected posterior power of the j-th source:
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Introducing the beta-divergence

m Minimization of Dis(P;, W;H;) — “Complex ISNMF".
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Introducing the beta-divergence

Minimization of Dis(P;, W,;H;) — “"Complex ISNMF".

Proposed approach: we replace the IS divergence with the
beta-divergence.

Heuristic — no more convergence guarantee.
Minimization of Ds(P;, W;H,) — multiplicative updates.
— Complex SNMF

© Phase-aware decomposition of the data;

© Uses a distortion metric adapted to audio.
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Setup

Harmonic/percussive source separation task (J = 2 sources).
Dataset:
DSD100: 100 music songs, split into learning/test sets;
Each excerpt is 20 seconds long.
Supervised separation scenario:
Each excerpt is split into two signals of 10 seconds.

The first is used for learning dictionaries W (k-means clustering
with 50 basis per dictionary).

The second is used for performing the separation.
Source separation quality:

Signal-to-distortion/interference/artifact ratios (SDR, SIR, and SAR).
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Learning

On the learning set:

58 SDR (dB) 14 SIR (dB) ; SAR (dB)

m Trade-off between interference (8 = 0.9) and artifacts (8 = 0.4)
reduction.

m 5 =0.5 — best overall distortion reduction.
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Comparison to other approaches

Baselines: NMF (also uses 5 = 0.5) and complex Euclidean NMF.

Median results over the test dataset: ¥

SDR SIR SAR | ¥
NMF 54 123 7.1 v
Complex Euclidean NMF | 2.0 8.6 35 | @
Complex SNMF 55 126 7.2 | W

Complex SNMF outperforms its Euclidean counterpart;

Slightly better results than NMF.

— Complex SNMF allows to incorporate phase constraints.
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Conclusion

A novel probabilistic framework where complex NMF
can be extended to any beta-divergence.

Future work:

Better understanding of the phase-corrected posterior power;
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Conclusion

A novel probabilistic framework where complex NMF
can be extended to any beta-divergence.

Future work:
Better understanding of the phase-corrected posterior power;
Phase-constrained complex SNMF;
Alternative probabilistic model — convergence guarantees;
Use DNNs instead of NMF for joint magnitude/phase estimation.
cf. some other IWAENC papers!
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Thanks!

) https://github.com/magronp/complex-beta-nmf
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