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Tampere University of Technology

m Second largest university in
Finland for engineering
sciences;

m A variety of research fields:

u Mathematics
m Computer science
m Civil engineering
u Signal processing
u
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Research in audio at TUT

Audio Research Group:
Head: Prof. Tuomas Virtanen;
Approx 20 members.

Main research areas:
Audio content analysis: sound event detection and classification;
Spatial audio and microphone array processing;

Source separation and signal enhancement.
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Probabilistic modeling of the phase for
audio source separation
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Audio source separation
Audio content is usually composed of several constitutive sounds.

3 Separation

4

One or several speakers;
Environmental / domestic 3 Mixing

3
sounds; L M [0 ] ‘&
Py =

Musical instruments; =
Various noises.

Those sounds, called sources, are mixed together to form a mixture;

Source separation = recovering the sources from the mixture.
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Applications of source separation

A useful preprocessing tool for many applications:

The mixture contains (non-relevant) information from other sources;

Easier to operate on isolated sources.
Examples:
Automatic speech recognition — clean speech vs. noise;
Rhythm analysis — drums vs. harmonic instruments;
Separation is also useful as such:

Upmixing: from mono to stereo / 5.1;

Stationary / transient sound separation — time-stretching.
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Application: hearing aids

J3
ie
Scenario: “cocktail party" problem;
Goal: Enhance the target speaker only.
Mixture v ip!

Brute-force gain W

With separation 'V

$ TAMPERE UNIVERSITY OF TECHNOLOGY P. Magron 17.10.2018 7/43



Application: music backtrack generation

Goal: remove one track from a music song to generate a backtrack.

Karakoke: remove the singing voice.
¢ - W
Lead guitar backtrack: become a guitar hero!

¢ L 9
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Outline

[ Problem setting
2| Is the phase really uniform?
3| Anisotropic Gaussian models

4 Towards joint estimation of magnitude and phase
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Separation in the time-frequency domain

m The short-time Fourier transform (STFT) reveals the particular
structure of sound:

Magnitude Phase
Raw waveform b o

Time (5)

s s
Time (s) Time (s)
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Separation in the time-frequency domain

m The short-time Fourier transform (STFT) reveals the particular
structure of sound:

Magnitude Phase

Raw waveform

Time (5)

s o o s
Time (s) Time (s)

= A complex-valued transform:

S; €CT = sjp= g e P
~

Magnitude
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Separation in the time-frequency domain

m The short-time Fourier transform (STFT) reveals the particular
structure of sound:

Magnitude Phase

Raw waveform

» ’ ' STFT

Time (5)

s 0 o 5
Time (s) Time (s)

= A complex-valued transform:

Magnitude

m Monochannel linear instantaneous mixture model: X = Zj S;.
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Separation in the time-frequency domain

The short-time Fourier transform (STFT) reveals the particular

structure of sound:

Raw waveform

» ’ ’ STFT

Time (s)

A complex-valued transform:

Sj S (CFXT — S ft = Tjft €
~—

Monochannel linear instantaneous mixture model: X = 3. S;.

Magnitude

Time (5)

Phase

Time (s)

Magnitude

Goal: compute an estimate S; of S;.
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General framework

Nonnegative Model / Filtering /
representation estimation phase recovery

X

= Nonnegative representation: magnitude/power spectrogram;
|
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General framework

Nonnegative Model / Filtering /
representation estimation phase recovery

= Nonnegative representation: magnitude/power spectrogram;
m Spectrogram model: KAM, NMF, DNNs...
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General framework

Nonnegative Model / Filtering /
representation estimation phase recovery

X

|

= Nonnegative representation: magnitude/power spectrogram;
m Spectrogram model: KAM, NMF, DNNs...

m Complex-valued STFTs retrieval: Wiener-like filtering...
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Wiener filtering

A

S, =

Source STFT (Estimated) Mixture STF'T

m ®$-source = P-mixture.
@ Issues in sound quality when sources overlap in the TF domain:

Mixture  Original  Wiener
¢ ¢ ¢
¢ ¢
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Probabilistic framework

The sources are modeled as random variables, which is convenient for:
Modeling uncertainty;
Incorporating prior information;
Obtaining estimators with nice statistical properties;
Deriving inference schemes with convergence guarantees.
Traditionally:
The sources are circularly-symmetric (or isotropic) variables;
Equivalently, their phase is assumed uniform;

Consequently, the estimators (e.g., Wiener filter) are phase-unaware.
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Proposed approach

Deriving phase models thanks to signal analysis;

Accounting for this structure is a non-uniform probabilistic phase
model;

Designing phase-aware mixture models and estimators for source
separation;

Towards the joint estimation of magnitude and phase for complete
source separation.
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A simple example

Let us consider a piano piece audio signal.

Spectrogram, phase {¢s .} and its histogram:

4000

3 0.2
>
3500 9]
— 2 =
N 3000 © 015
; S
= 2500 [
9
8 2000 0 4= 0.1
2 1500 . g
g =
@ 1000 5 0.05
T 2 =
s
500 (]
o

Time (s) - - ¢

The phase appears as uniformly-distributed.
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Sinusoidal model

A signal is modeled as a sum of sinusoids in the time domain:

.I‘(n) — Z Ap(n)€2i7rl/”(n)n’+i¢0"’
p

Phase of the STFT:
Gpt = Qpi1 + 2l

I = hop size of the STFT;

vy, = normalized frequency in channel f and frame ¢.

$ TAMPERE UNIVERSITY OF TECHNOLOGY P. Magron 17.10.2018 15/43



Sinusoidal model

Used for a variety of applications:
Speech modeling and synthesis;
Time-stretching (phase vocoder);
Audio restoration;

Source separation.

P. Magron, R. Badeau, B. David, Phase reconstruction of spectrograms with linear unwrapping: application to audio signal
restoration, Proc. of EUSIPCO, August 2015.

P. Magron, R. Badeau, B. David, Model-based STFT phase recovery for audio source separation, IEEE/ACM Transactions on
Audio, Speech, and Language Processing June 2018.
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Statistical interpretation

Sinusoidal model — the phase in a given TF bin is known, provided its
value in the previous frame and the frequency.

= |s that consistent with a uniform model?

Plotting the histogram {¢ .} s, only makes sense if the ¢ are
independent and identically distributed.

Observing uniformity validates a posteriori this implicit assumption:

If the ¢f; are independent and ~ D, then D = Uy 24|

This model only conveys a global information.

= What about the local structure of the phase (e.g., sinusoidal model)?
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Von Mises phase

We want to promote a specific phase model 1, for ¢ .

Not possible with a uniform distribution — non-uniform phase.

Von Mises distribution:

(bft ~ VM (/’Lft7 ’%) 35 12221
——k=5

£=100

I

I

|

T

|

j
[+ = phase location = i
parameter. S i
K = concentration !
parameter, quantifies i
the non-uniformity of M}w ;
the phase. 0 — - =
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Sinusoidal location parameter

Model:
ppt = pge—1 + 2wl (1)

Recursive estimation of pu:
@ In frame ¢, track the magnitude peaks;

2 Estimate the frequencies with quadratic interpolated FFT;

B Apply (1) and proceed to next frame.

Magnitude
—
Magnitude

v,
e
Frequency

Frequency
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Maximum likelihood estimation

Center the phases: ¥ = ¢pe — fifs

Phases Centered phases
bt ~ VM(pge, k) Ve~ YM(0, k)
Non-identical distribution Identical distribution
Non-independent Independent

To estimate x: maximize the likelihood of 1, which leads to solving:

Il(,‘ﬂ',) - 1 .
Totr) ﬁ;wb(wm-

Implicit equation (Bessel functions) — no analytic solutions;

But concave and monotonous function — fast numerical schemes.
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Validation

Centered phases {¢s+} and their histogram:

4000

= 3 25
3500 fEEE
N 3000 2
= 2500 &
> 15
© 2000

S 1500

-

o
@ 1000
o

L 500

Relative frequency

=)

Time (s) o
m An optimal k for each instrument;
m A great K means that the phase is close to .
m Here, p is given by a sinusoidal model;

m So, k quantifies the “sinusoidality" of the data.
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Summary

The uniform and VM models are not contradictory: both are
statistically relevant

They convey different information about the phase:
Uniform carries a global information.

VM accounts for its local structure.

P. Magron, T. Virtanen, On Modeling the STFT phase of Audio Signals with the Von Mises Distribution, Proc. of IVAENC
September 2018.
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Traditional source model

Mixture in each TF bin:

J):E S5

Jj=1

Gaussian sources:

: i Cj
s; ~N(m;,T';) with T'; = (% 3)
: ¢ v
3 i
m; = mean — location of the source;
v = variance — energy of the source;

c¢; = relation term — joint variability of s; and 5;.

Traditionally: circularly-symmetric (or isotropic) sources: m; = ¢; = 0.
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RVM model

In polar coordinates: s; = r;e'®s
Isotropic Gaussian is equivalent to:
» Rayleigh magnitude: 7; ~ R(v;);

u Uniform phase: ¢; ~ Ujg 2x[-
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RVM model

In polar coordinates: s; = 1;¢'%s
Isotropic Gaussian is equivalent to:
Rayleigh magnitude: r; ~ R(v;);
Uniform phase: ¢; ~ Ujg 2x[-
Proposed approach:
Keep the Rayleigh magnitude;
Instead of uniform, von Mises phase: ¢; ~ VM(uj, k).
— Rayleigh+ von Mises (RVM) model.

© A phase-aware model;

© Not tractable (p(s;) =2, p(x) =7).
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Anisotropic Gaussian model (1/2)

Anisotropic Gaussian (AG) sources:

s;~N(m;,T;)withT; = (7
¢

m; # 0 and ¢; # 0 = the phase is non-uniform.

To define the moments, we choose the same ones as in the VM model:

VM(MJ',FL]‘) ’— N(mj,Fj)

(]; Moments mj v
P N . pl®j : .
R(vj) rie'? | ——— S;
€
Rayleigh+Von Mises Anisotropic Gaussian
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Anisotropic Gaussian model (2/2)

The AG model depends on 3 parameters:
v; = energy-related parameter.
1t; = phase location parameter.
k = quantifies the non-uniformity of the phase:

k=0 — my; =c¢; =0 — back to isotropic sources.

Imaginary part

Real part
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Anisotropic Gaussian model (2/2)

Phase-awareness  Tractability
Isotropic Gaussian X
Rayleigh 4+ von Mises X
Anisotropic Gaussian

P. Magron, R. Badeau, B. David, Ph di ds anisotropic G ian model for audio source separation, Proc. of IEEE
ICASSP March 2017.
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Source separation

At first, we assume that v; are known (oracle, estimated
beforehand...);

f; estimated in a deterministic fashion (cf. sinusoidal model);

Complex-valued sources estimated by the posterior mean: 5; = m;-

Model Isotropic Anisotropic
K 0 #0
Posterior mean | Wiener filter | Anisotropic Wiener filter
k
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Experiments - protocol

Monaural audio source separation task:
We only inquire about adding some phase information;
v; =ground truth power spectrograms.
Dataset:
DSD100 database: 100 music songs, split into training/test sets;
J = 4 sources: bass, drum, vocals and other.
Source separation quality:

Signal-to-distortion /interference/artifact ratios (SDR, SIR, and SAR).
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Experiments: concentration parameter (1/2)

We use the training set to learn the optimal concentration parameters.

%m

g 9

First approach: “,
102 107 100 10!

Same & for all sources; ”
Perform the whole @ R

. ~19

separation;, L.
Pick k that maximizes i e =3 o

the separation quality. 12

E_gu

a:’m

u<) 9

8

1
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Experiments: concentration parameter (2/2)

Second approach:
One k; per source;

Given by the ML estimate (cf. first part).

3.5

« 25

12#%@%

bass drums other vocals
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Separation results

On the test set:

Kj SDR SIR  SAR
0 85 191 9.1
grid search | 9.5 21.6 9.9
ML 9.7 219 10.1

Mixture  Original Wiener Anisotropic Wiener
< < < ¢
< < <

Including phase information in a separation filter improves the
separation quality.

Estimating x with our proposed ML procedure is faster and slightly
better than using a brutal grid search approach.
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Consistency constraint

Other common approach for phase recovery: use a representation-based
constraint.

Complex matrices CF*T

STFT~!

Time domain signals ]]9‘/"'

—G(Y) |
The STFT is computed with overlapping analysis windows;
Redundancies — constraints between adjacent TF bins;

Not every complex matrix is the STFT of a time-domain signal.

This mismatch is measured by the inconsistency:

I(Y) = [Y - G(Y)P?
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Consistent anisotropic Wiener filtering

Regularize the Wiener filter with a consistency constraint — Consistent

Wiener (CW).

Proposed: regularize the anisotropic Wiener filter — Consistent

anisotropic Wiener (CAW).

Filter \ Phase constraint Model-based  Consistency-based
Wiener X X
Consistent Wiener X

Anisotropic Wiener
Consistent anisotropic Wiener

X

P. Magron, J. Le Roux, T. Virtanen, Consistent anisotropic Wiener filtering for audio source separation, Proc. of IEEE

WASPAA October 2017.
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CAW performance

Estimated with the preconditioned conjugate gradient algorithm.
Depends on two parameters:

Kk = controls the sinusoidal-based phase constraint;

& = controls the consistency constraint;

Those are tuned on a training set. Results on the test set:

165 Y i

%/ LI

o 0 —— Wiener

o 155 —+—CW

(2] I —— AW |
15 —<—CAW
“wsof
14

0 10 20 30 40 50 60
Iterations
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Summary

The anisotropic Gaussian framework is convenient for including
phase information in mixture models for audio source separation

Next step: also estimate the variances v; for complete source separation.
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Complete source separation

Goal: estimate the magnitude and the phase of the sources.
Needs an additional spectrogram-like model and inference technique.
Popular models: NMF, DNNs.
Different approaches:
o Two-stage: first estimate the magnitude, and then recover the phase;

21 One-stage: jointly estimate the magnitude and the phase.
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Nonnegative matrix factorization

Find a factorization of a nonnegative matrix V (e.g., a spectrogram):

Magnitude

Magnituds
—

Estimation: minw g D(V, WH)

Popular choices for D are the beta-divergences (Euclidean,
Kullback-Leibler, ltakura-Saito...);

Optimization techniques — multiplicative updates rules.
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Deep neural networks

Non-linear mapping between input (e.g., V) and output (e.g., V).

Input layer

Neurons perform linear operations (dot products, convolution...)

Hidden layers

followed by nonlinear functions;

The network is learned by minimizing a loss function on a training
dataset (supervised learning).
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Two-stage approach
NMF + phase recovery
Slight improvement, less significant than in Oracle condition;

Phase recovery is interesting only on top of good magnitude
estimates.

DNN + phase recovery
More significant results (usually, DNNs > NMF);
Phase recovery — reduces interference between sources.
Mixture  Original DNN+Wiener DNN+CAW
9 < 9 9

P. Magron, K. Drossos, S.I. Mimilakis, T. Virtanen, Reducing interference with phase recovery in DNN-based monaural singing
voice separation, Proc. of Interspeech September 2018.

K. Drossos, P. Magron, S.I. Mimilakis, T. Virtanen, Harmonic-Percussive Source Separation with Deep Neural Networks and
Phase Recovery, Proc. of IWAENC September 2018.
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Joint magnitude and phase estimation

Alternatively: estimate jointly the magnitude and the phase, or
equivalently, the complex-valued STFT directly.

With DNNs:
Complex-valued DNNs;
Real / imaginary parts joint processing;
First attempts to deep phase recovery.
With NMF:
Complex NMF.

= A phase-aware probabilistic framework with NMF/DNN structure for
the variance parameters.
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Bayesian AG model (1/2)

Until then: “oracle" conditions for v;.

t; estimated in a deterministic fashion from the magnitudes.
Now: v; is to be estimated,

We can't estimate j; from the (unknown) magnitudes.

We also need to model the uncertainty on the sinusoidal model given
the uncertainty on the magnitude estimates.

Proposed approach:
Model p; as a hidden latent variable;

Add a Markov chain prior on the location parameter ;.

1, pelitg, pe—1 ~ VMg, pe—1 + 2mlvg g, 7),

sinusoidal model

P. Magron, T. Virtanen, Bayesian anisotropic Gaussian model for audio source separation, Proc. of IEEE ICASSP April 2018.
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Bayesian AG model (2/2)

Vit

] —1

Vi ft —> N(mjge.Tjpi)

j=1,...,J
!

@ N (M g1, T 1)
it

m Possible to add an NMF or a DNN model on v;.

t+1
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Complex ISNMF

In the Bayesian AG model, NMF variance: V; = W;H;;
Estimation with the expectation-maximization algorithm;
When k = 0, it is ISNMF — in general: Complex ISNMF.

Experimentally:

Complex ISNMF performs slightly better than ISNMF and Complex
NMF;

Better variance estimates could be obtained with DNNs.

P. Magron, T. Virtanen, Complex ISNMF: a phase-aware model for monaural audio source separation, /EEE/ACM Transactions
on Audio, Speech and Language Processing, January 2019.
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Summary

The anisotropic Gaussian framework allows to jointly estimate
magnitudes and phases for audio source separation applications.

Promising approach: using DNNs instead of NMF for the variance.

$ TAMPERE UNIVERSITY OF TECHNOLOGY P. Magron 17.10.2018 44/43



Conclusion and perspectives

Main messages:
The STFT phase can be structured thanks to signal analysis;

Those phase constraints can be incorporated in a non-uniform
probabilistic framework;

Such frameworks show good results for phase-aware source
separation.

Future work:
Advanced models, deep phase recovery...
Phase-aware DNNs;

Alternative phase-aware distribution.
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Thanks!

http://www.cs.tut.fi/~magron/
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