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Tampere University of Technology

Second largest university in
Finland for engineering
sciences;
A variety of research fields:

Mathematics
Computer science
Civil engineering
Signal processing
...
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Research in audio at TUT

Audio Research Group:
Head: Prof. Tuomas Virtanen;
Approx 20 members.

Main research areas:

Audio content analysis: sound event detection and classification;

Spatial audio and microphone array processing;

Source separation and signal enhancement.
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Audio source separation

Audio content is usually composed of several constitutive sounds.

One or several speakers;
Environmental / domestic
sounds;
Musical instruments;
Various noises.

Separation

Mixing

Those sounds, called sources, are mixed together to form a mixture;

Source separation = recovering the sources from the mixture.
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Applications of source separation

A useful preprocessing tool for many applications:

The mixture contains (non-relevant) information from other sources;

Easier to operate on isolated sources.

Examples:

Automatic speech recognition → clean speech vs. noise;

Rhythm analysis → drums vs. harmonic instruments;

Separation is also useful as such:

Upmixing: from mono to stereo / 5.1;

Stationary / transient sound separation → time-stretching.
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Application: hearing aids

Scenario: “cocktail party" problem;
Goal: Enhance the target speaker only.

Mixture
Brute-force gain
With separation
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Application: music backtrack generation

Goal: remove one track from a music song to generate a backtrack.

Karakoke: remove the singing voice.

→

Lead guitar backtrack: become a guitar hero!

→
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Separation in the time-frequency domain
The short-time Fourier transform (STFT) reveals the particular
structure of sound:
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A complex-valued transform:

Sj ∈ CF×T → sj,ft = rj,ft︸︷︷︸
Magnitude

e

iφj,ft︸︷︷︸
Phase

Monochannel linear instantaneous mixture model: X =
∑
j Sj .

Goal: compute an estimate Ŝj of Sj .
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General framework

Nonnegative

representation
Model /

estimation

Filtering /

phase recovery

Nonnegative representation: magnitude/power spectrogram;

Spectrogram model: KAM, NMF, DNNs...

Complex-valued STFTs retrieval: Wiener-like filtering...
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Wiener filtering

Ŝj
Source STFT (Estimated)

= V̂j∑J
k=1 V̂k

Mask

� X
Mixture STFT

Φ-source = Φ-mixture.

Issues in sound quality when sources overlap in the TF domain:

Mixture Original Wiener
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Probabilistic framework

The sources are modeled as random variables, which is convenient for:

Modeling uncertainty;

Incorporating prior information;

Obtaining estimators with nice statistical properties;

Deriving inference schemes with convergence guarantees.

Traditionally:

The sources are circularly-symmetric (or isotropic) variables;

Equivalently, their phase is assumed uniform;

Consequently, the estimators (e.g., Wiener filter) are phase-unaware.
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Proposed approach

Deriving phase models thanks to signal analysis;

Accounting for this structure is a non-uniform probabilistic phase
model;

Designing phase-aware mixture models and estimators for source
separation;

Towards the joint estimation of magnitude and phase for complete
source separation.
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A simple example

Let us consider a piano piece audio signal.

Spectrogram, phase {φf,t} and its histogram:
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The phase appears as uniformly-distributed.
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Sinusoidal model

A signal is modeled as a sum of sinusoids in the time domain:

x(n) =
∑
p

Ap(n)e2iπνp(n)n+iφ0,p

Phase of the STFT:
φft ≈ φft−1 + 2πlνft

l = hop size of the STFT;

νft = normalized frequency in channel f and frame t.
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Sinusoidal model

Used for a variety of applications:

Speech modeling and synthesis;

Time-stretching (phase vocoder);

Audio restoration;

Source separation.

P. Magron, R. Badeau, B. David, Phase reconstruction of spectrograms with linear unwrapping: application to audio signal
restoration, Proc. of EUSIPCO, August 2015.

P. Magron, R. Badeau, B. David, Model-based STFT phase recovery for audio source separation, IEEE/ACM Transactions on
Audio, Speech, and Language Processing June 2018.
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Statistical interpretation

Sinusoidal model → the phase in a given TF bin is known, provided its
value in the previous frame and the frequency.

⇒ Is that consistent with a uniform model?

Plotting the histogram {φft}ft only makes sense if the φft are
independent and identically distributed.

Observing uniformity validates a posteriori this implicit assumption:

If the φft are independent and ∼ D, then D = U[0,2π[

This model only conveys a global information.

⇒ What about the local structure of the phase (e.g., sinusoidal model)?
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Von Mises phase

We want to promote a specific phase model µft for φft.

Not possible with a uniform distribution → non-uniform phase.

Von Mises distribution:

φft ∼ VM(µft, κ)

µft = phase location
parameter.
κ = concentration
parameter, quantifies
the non-uniformity of
the phase. 0 2 
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Sinusoidal location parameter

Model:
µft = µft−1 + 2πlνft (1)

Recursive estimation of µ:

1 In frame t, track the magnitude peaks;

2 Estimate the frequencies with quadratic interpolated FFT;

3 Apply (1) and proceed to next frame.
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Maximum likelihood estimation

Center the phases: ψft = φft − µft

Phases Centered phases
φft ∼ VM(µft, κ) ψft ∼ VM(0, κ)

Non-identical distribution Identical distribution
Non-independent Independent

To estimate κ: maximize the likelihood of ψ, which leads to solving:

I1(κ)
I0(κ) = 1

FT

∑
f,t

cos(ψft).

Implicit equation (Bessel functions) → no analytic solutions;

But concave and monotonous function → fast numerical schemes.
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Validation

Centered phases {ψf,t} and their histogram:
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An optimal κ for each instrument;

A great κ means that the phase is close to µ.

Here, µ is given by a sinusoidal model;

So, κ quantifies the “sinusoidality" of the data.
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Summary

The uniform and VM models are not contradictory: both are
statistically relevant

They convey different information about the phase:

Uniform carries a global information.

VM accounts for its local structure.

P. Magron, T. Virtanen, On Modeling the STFT phase of Audio Signals with the Von Mises Distribution, Proc. of IWAENC
September 2018.
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Traditional source model

Mixture in each TF bin:

x =
J∑
j=1

sj

Gaussian sources:

sj ∼ N (mj ,Γj) with Γj =
(
γj cj
c̄j γj

)
mj = mean → location of the source;

γj = variance → energy of the source;

cj = relation term → joint variability of sj and s̄j .

Traditionally: circularly-symmetric (or isotropic) sources: mj = cj = 0.
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RVM model

In polar coordinates: sj = rje
iφj

Isotropic Gaussian is equivalent to:

Rayleigh magnitude: rj ∼ R(vj);

Uniform phase: φj ∼ U[0,2π[.

Proposed approach:

Keep the Rayleigh magnitude;

Instead of uniform, von Mises phase: φj ∼ VM(µj , κj).

→ Rayleigh+ von Mises (RVM) model.

A phase-aware model;

Not tractable (p(sj) =?, p(x) =?).
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Anisotropic Gaussian model (1/2)

Anisotropic Gaussian (AG) sources:

sj ∼ N (mj ,Γj) with Γj =
(
γj cj
c̄j γj

)
mj 6= 0 and cj 6= 0 ⇒ the phase is non-uniform.

To define the moments, we choose the same ones as in the VM model:

Moments

Rayleigh+Von Mises Anisotropic Gaussian
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Anisotropic Gaussian model (2/2)

The AG model depends on 3 parameters:

vj = energy-related parameter.

µj = phase location parameter.

κ = quantifies the non-uniformity of the phase:

κ = 0 → mj = cj = 0 → back to isotropic sources.
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Anisotropic Gaussian model (2/2)

Phase-awareness Tractability
Isotropic Gaussian 7 3

Rayleigh + von Mises 3 7
Anisotropic Gaussian 3 3

P. Magron, R. Badeau, B. David, Phase-dependent anisotropic Gaussian model for audio source separation, Proc. of IEEE
ICASSP March 2017.
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Source separation

At first, we assume that vj are known (oracle, estimated
beforehand...);

µj estimated in a deterministic fashion (cf. sinusoidal model);

Complex-valued sources estimated by the posterior mean: ŝj = m′j

Model Isotropic Anisotropic
κ 0 6= 0

Posterior mean Wiener filter Anisotropic Wiener filter
m′j

vj∑
k
vk
x ...
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Experiments - protocol

Monaural audio source separation task:

We only inquire about adding some phase information;

vj =ground truth power spectrograms.

Dataset:

DSD100 database: 100 music songs, split into training/test sets;

J = 4 sources: bass, drum, vocals and other.

Source separation quality:

Signal-to-distortion/interference/artifact ratios (SDR, SIR, and SAR).
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Experiments: concentration parameter (1/2)

We use the training set to learn the optimal concentration parameters.

First approach:
Same κ for all sources;
Perform the whole
separation;
Pick κ that maximizes
the separation quality.
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Experiments: concentration parameter (2/2)

Second approach:

One κj per source;

Given by the ML estimate (cf. first part).

bass drums other vocals

1

1.5

2

2.5

3

3.5

P. Magron 17.10.2018 30/43



Separation results

On the test set:

κj SDR SIR SAR
0 8.5 19.1 9.1
grid search 9.5 21.6 9.9
ML 9.7 21.9 10.1

Mixture Original Wiener Anisotropic Wiener

Including phase information in a separation filter improves the
separation quality.

Estimating κ with our proposed ML procedure is faster and slightly
better than using a brutal grid search approach.
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Consistency constraint
Other common approach for phase recovery: use a representation-based
constraint.

The STFT is computed with overlapping analysis windows;

Redundancies → constraints between adjacent TF bins;

Not every complex matrix is the STFT of a time-domain signal.

This mismatch is measured by the inconsistency:

I(Y) = |Y− G(Y)|2
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Consistent anisotropic Wiener filtering

Regularize the Wiener filter with a consistency constraint → Consistent
Wiener (CW).

Proposed: regularize the anisotropic Wiener filter → Consistent
anisotropic Wiener (CAW).

Filter \ Phase constraint Model-based Consistency-based
Wiener 7 7

Consistent Wiener 7 3
Anisotropic Wiener 3 7

Consistent anisotropic Wiener 3 3

P. Magron, J. Le Roux, T. Virtanen, Consistent anisotropic Wiener filtering for audio source separation, Proc. of IEEE
WASPAA October 2017.
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CAW performance
Estimated with the preconditioned conjugate gradient algorithm.

Depends on two parameters:

κ = controls the sinusoidal-based phase constraint;

δ = controls the consistency constraint;

Those are tuned on a training set. Results on the test set:
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Summary

The anisotropic Gaussian framework is convenient for including
phase information in mixture models for audio source separation

Next step: also estimate the variances vj for complete source separation.
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Complete source separation

Goal: estimate the magnitude and the phase of the sources.

Needs an additional spectrogram-like model and inference technique.

Popular models: NMF, DNNs.

Different approaches:

1 Two-stage: first estimate the magnitude, and then recover the phase;

2 One-stage: jointly estimate the magnitude and the phase.
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Nonnegative matrix factorization
Find a factorization of a nonnegative matrix V (e.g., a spectrogram):
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Estimation: minW,H D(V,WH)

Popular choices for D are the beta-divergences (Euclidean,
Kullback-Leibler, Itakura-Saito...);

Optimization techniques → multiplicative updates rules.
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Deep neural networks

Non-linear mapping between input (e.g., V) and output (e.g., Vj).
Input layer Hidden layers Output layer

Neurons perform linear operations (dot products, convolution...)
followed by nonlinear functions;

The network is learned by minimizing a loss function on a training
dataset (supervised learning).
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Two-stage approach
NMF + phase recovery

Slight improvement, less significant than in Oracle condition;
Phase recovery is interesting only on top of good magnitude
estimates.

DNN + phase recovery
More significant results (usually, DNNs > NMF);
Phase recovery → reduces interference between sources.

Mixture Original DNN+Wiener DNN+CAW

P. Magron, K. Drossos, S.I. Mimilakis, T. Virtanen, Reducing interference with phase recovery in DNN-based monaural singing
voice separation, Proc. of Interspeech September 2018.

K. Drossos, P. Magron, S.I. Mimilakis, T. Virtanen, Harmonic-Percussive Source Separation with Deep Neural Networks and
Phase Recovery, Proc. of IWAENC September 2018.
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Joint magnitude and phase estimation

Alternatively: estimate jointly the magnitude and the phase, or
equivalently, the complex-valued STFT directly.

With DNNs:

Complex-valued DNNs;

Real / imaginary parts joint processing;

First attempts to deep phase recovery.

With NMF:

Complex NMF.

⇒ A phase-aware probabilistic framework with NMF/DNN structure for
the variance parameters.
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Bayesian AG model (1/2)
Until then: “oracle" conditions for vj .

µj estimated in a deterministic fashion from the magnitudes.
Now: vj is to be estimated,

We can’t estimate µj from the (unknown) magnitudes.
We also need to model the uncertainty on the sinusoidal model given
the uncertainty on the magnitude estimates.

Proposed approach:
Model µj as a hidden latent variable;
Add a Markov chain prior on the location parameter µj .

µj,ft|µj,ft−1 ∼ VM(µj,ft−1 + 2πlνj,ft︸ ︷︷ ︸
sinusoidal model

, τ),

P. Magron, T. Virtanen, Bayesian anisotropic Gaussian model for audio source separation, Proc. of IEEE ICASSP April 2018.
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Bayesian AG model (2/2)

Possible to add an NMF or a DNN model on vj .
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Complex ISNMF

In the Bayesian AG model, NMF variance: Vj = WjHj ;

Estimation with the expectation-maximization algorithm;

When κ = 0, it is ISNMF → in general: Complex ISNMF.

Experimentally:

Complex ISNMF performs slightly better than ISNMF and Complex
NMF;

Better variance estimates could be obtained with DNNs.

P. Magron, T. Virtanen, Complex ISNMF: a phase-aware model for monaural audio source separation, IEEE/ACM Transactions
on Audio, Speech and Language Processing, January 2019.
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Summary

The anisotropic Gaussian framework allows to jointly estimate
magnitudes and phases for audio source separation applications.

Promising approach: using DNNs instead of NMF for the variance.
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Conclusion and perspectives

Main messages:

The STFT phase can be structured thanks to signal analysis;

Those phase constraints can be incorporated in a non-uniform
probabilistic framework;

Such frameworks show good results for phase-aware source
separation.

Future work:

Advanced models, deep phase recovery...

Phase-aware DNNs;

Alternative phase-aware distribution.
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Thanks!

http://www.cs.tut.fi/~magron/
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