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Audio source separation
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Estimate individual instrumental tracks from a mixture music song;
Applications: karaoke, automatic transcription, augmented mixing...

Challenges: Reduction of interference and artifacts.
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General framework

In the time-frequency domain (here the STFT): X =3, S;.

Nonnegative Model / Filtering /
representation estimation phase recovery

Nonnegative representation: magnitude/power spectrogram;
Spectrogram model: KAM, NMF, DNNs...

Complex-valued STFTs retrieval: Wiener-like filtering...
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Classical Gaussian model

T = Zsj with s; ~ N(m;,T';)
J

Circular-symmetric or isotropic sources:
m; = 0 and Fj = Uj]

Posterior mean = Wiener filtering:

v

J
— X
>k Uk

Sj:

The phase of the mixture is assigned to each source;

It may result in interference and artifacts in the estimated signals, if
they overlap in time and frequency.
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Phase model

In the isotropic Gaussian model: s; = r;e® with:
rj ~ R(v;) and ¢; ~ Up 2x|
—— N——
Rayleigh Uniform
However, for a sum of slowly-varying sinusoids, the STFT phase is:

/Lj,ft ~ /«Lj,ftfl =+ 27Tll/j,ft.

The phase in a given TF bin is known, provided its value in the
previous frame and the frequency;

A uniform phase model does not allow to favor this value.

Goal: A probabilistic model with non-uniform phase
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Von Mises phase

it
s; =r;e'? .
——r=0.1
35 — k=2
——k=5
. ) 3 x=100
Rayleigh magnitude: r; ~ R(v;); 25

(&l )

Von Mises phase: ¢; ~ VM (u;, k);

Parameters:

Power v;;

Phase location 11; = the favored model;

Concentration x = how important y; is.
But this model is not tractable (p(z) =7).

— Gaussian approximation.
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Anisotropic Gaussian model

Complex Gaussian variables:

sj ~ N(my,T;) with T'; = (YJ‘ Cj).
G
The relation terms c; are non-zero in general (= anisotropy)
= the non-uniformity of the phase is preserved.

To define the moments, we choose the same ones as in the Rayleigh+Von
Mises model:

VM(pj, k) ’— N(m;,T;)

(;5 Moments mj v
. L plPy4 . .
R(vj) > rie'?l | ————>1j S
G
Rayleigh+Von Mises Anisotropic Gaussian
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Phase location - sinusoidal modeling

,uj,ft ~ :uj,ft—l + 27rll/j,ft

Markov chain structure:

F—1 T—1
p(s) = [T (o) TT ol pelsprr)
f=0 =1

with, for ¢t #£ 0:

g, relpg, pr—1 ~ VMg pe—1 + 27mlvj g4, 7)

Log-prior:

IOg(p(u)) =7 Z R (eiﬂjvft eiiﬂj,ft—lfziﬂ'll/j’ft)
g, fit
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Full model

Vj, ft

VM(Mj,ft—l‘f‘Qﬂ'levfth) :

Vi, ft —» N(my, g0, Tjpe)

j=1,...,J

@ N (M g, T pt)
‘1
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Expectation-maximization (EM) framework

Estimation of © = {V, u} in a maximum a posteriori sense:

Cmap(0) = logp(X|O) + log p(O)

Instead, EM consists in maximizing:

Q""(0,0") = QY(0,0") +1logp(©)

where

QML (0,0) = / p(SIX: ) log p(X, S: ©)dS

Due to the mixing constraint, we use a set of J — 1 free variables.
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E-step

Posterior mean = anisotropic Wiener filter:

—1 [Tt — My, ft
mf e =my g+ (Vige Cige) Lo gt <1_7;t - mj’ ;t>

= When x = 0 — Wiener filter.

Posterior covariance:

! /
o g ft Cj,ft> =T =T o T7L T
i . ft Jt ft
j,ft <C§’ﬁ 7;’,ft J.f Bftta ftt g f
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M-step (1/2)

For the update on the power parameter V, minimize:

pg ft a5, ft
log( vj, ft + =
sz:t Vi ft - VUi ft

For the update on the phase parameter g, maximize:

DR (eI 4 By peT )
j7f7t
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M-step (2/2)

For isotropic variables (x = 0):
The cost becomes the ltakura-Saito divergence between P and V
P becomes the posterior power;
With an NMF on V: ISNMF.
In general (x # 0):
P is the phase-corrected posterior power;

With an NMF on V: "Complex ISNMF".
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Setup

Monaural audio source separation task:
We only inquire about adding some phase information;
Powers v; =ground truth power spectrograms.
Dataset:
DSD100 database: 100 music songs, split into learning/test sets;
J = 4 sources: bass, drum, vocals and other.
Source separation quality:
Signal-to-distortion/interference/artifact ratios (SDR, SIR, and SAR);

Perceptual metrics: overall, target, interference and artifact -related
scores (OPS, TPS, IPS and APS).
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Influence of the phase parameters

On the learning set:

SDR (dB) SIR (dB)

m Non-null values of the phase parameters can outperform a
phase-unaware approach (k = 7 =0);

m A compromise between those criteria must be reached: trade-off
between interference and artifacts.
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Comparison to other approaches

Comparison references:

Phase-unaware Wiener filtering;

Consistent Wiener (CW) filtering;

Anisotropic Wiener (AW) filtering (deterministic phase p;).

OPS
TPS
IPS

APS

Wiener
19.2
28.4
34.7
30.6

cw
19.7
30.4
34.5
31.0

AW
23.0
32.9
37.7
34.8

Proposed
23.3
32.9
38.9
34.1

Slightly better results than AW/CW for perceptual metrics;

bass is neater and drum contains less artifacts.
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Conclusion

Accounting for a phase model in a non-uniform statistical model
improves the separation quality over a phase-unaware approach.

Future work: joint magnitude and phase estimation in this Bayesian
anisotropic Gaussian framework.

NMF on v; — Complex ISNMF.
Estimate v; with DNNs, cf. [Nugraha, 2016].

More efficient selection of

@ P. Magron, T. Virtanen

Complex ISNMF: a phase-aware model for monaural audio source separation
submitted in the IEEE Transactions on Audio, Speech, and Language Processing.
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Thanks!

m Sound examples:

http://www.cs.tut.fi/“magron/demos/demo_ICASSP2018.html

m Paper on Complex ISNMF:
https://arxiv.org/abs/1802.03156
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