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Audio source separation

Separation

Mixing

Extraction of sj from x =
∑
j sj ;

Applications: karaoke, automatic transcription, augmented mixing...

Challenges: Reduction of interference and artifacts.
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General framework

Short-Term Fourier Transform: X =
∑
j Sj .

SeparationNonnegative
representation

Estimation /
phase recovery

Nonnegative representation: magnitude or power spectrogram;

Separation stage: NMF, DNNs, KAM...

Complex-valued STFTs estimation.
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Wiener filtering
Soft masking of the mixture’s STFT:

Ŝj =
v̂j∑
l v̂l

X

MMSE estimate under a Gaussian assumption;
φ-source = φ-mixture;
Issues when sources overlap in the TF domain.
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Phase recovery - Consistency

Time (s)

Inconsistency: I(X) = ||F(X)||2 = ||X − G(X)||2.

Phase estimation through inconsistency minimization.

For source separation: combine mixture phase/consistency constraint.

Consistent Wiener filtering.
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Phase recovery - Sinusoidal model
A signal is modeled as a

∑
of sinusoids:

x(n) =
∑
p

Ape
2iπνpn+iφ0,p

Explicit relationship between the phases of adjacent time frames:

→ Phase unwrapping:

φft = φft−1 + 2πlνf

For slowly-varying sinusoids, estimation within each time frame:

1 Frequency estimation νft (QIFFT);

2 Phase unwrapping: φft = φft−1 + 2πSνft.

3 Proceed to next frame.
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Problem setting

Two phase recovery approaches using distinct properties:

Consistency-based approaches use a property of the STFT;

Phase unwrapping uses a signal model.

Can we combine those phase models for improved audio source
separation?
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Isotropic Gaussian model

Classical Gaussian source model (circular-symmetric or isotropic):

Sj ∼ N (0, vjI)

Equivalently, Sj = Vje
iΦj where

Φj ∼ U[0,2π[︸ ︷︷ ︸
Uniform

Uniform phase: we cannot incorporate a phase model.

→ Proposed approach: non-uniform phase

Paul Magron 17.10.2017 8/15



Anisotropic Gaussian model

Sj ∼ N (mj ,Γj)

The moments (mj and Γj) now depend on:

A phase location parameter φj , given by Phase Unwrapping;

A concentration parameter κ, which promotes anisotropy:

κ = 0⇔ isotropic sources.
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MMSE estimation - no constraints

Posterior variables: S|X ∼ N (µ,Ξ).

Minus log-posterior distribution:

Ψ(S) =
∑
ft

(Sft − µ
ft

)HΞ−1
ft (Sft − µ

ft
) where u =

(
u
ū

)

Minimization of Ψ → MMSE estimates: Ŝj = µj .

When κ = 0 (i.e., isotropic variables): Wiener filtering.

→ Optimal combination of modeled and mixture phases.
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Consistency constraint

Goal: account for a consistency property.

Novel cost function (if J = 2 sources):

Ψδ(S) =
∑
ft

(Sft − µft)HΞ−1
ft (Sft − µft) + 2 δ||F(S)||2︸ ︷︷ ︸

Consistency constraint

Minimization: preconditioned conjugate gradient algorithm.

A generalization of the previous approaches.

When κ 6= 0, δ 6= 0: Consistent Anisotropic Wiener filtering.
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Setup

Musical accompaniment / singing voice separation task.

100 songs from the DSD100 dataset;

Variance parameters are either known (oracle) or estimated
beforehand: NMF on the isolated spectrograms (informed source
separation);

The optimal anisotropy weight κ is determined on 50 songs (training
set).
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Influence of the consistency constraint

10 -2 10 0 10 2
15

15.5

16

16.5

17

17.5

S
D

R
 (

d
B

)
Oracle

10 -2 10 0 10 2
14.2

14.4

14.6

14.8

15

15.2

15.4

15.6
Informed

Isotropic

Anisotropic

Promoting consistency improves the separation quality;

Existence of an optimal consistency weight (around 1).
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Performance over iterations
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Best results in terms of SDR/SIR/SAR;

A given value of the SDR is reached in less iterations (cf. black line).

The computational cost per iteration is roughly the same → the
procedure is overall faster than Consistent Wiener.
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Conclusion

Combining model-based and representation-based phase properties
outperforms both approaches taken separately.

Future work:

Extensions to more sources / multichannel

Real-time implementations

A generative consistent model

"Consistent" neural networks

Paul Magron 17.10.2017 15/15


