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Audio source separation
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Applications: karaoke, automatic transcription, augmented mixing...

Challenges: Reduction of interference and artifacts.

$ TAMPERE UNIVERSITY OF TECHNOLOGY Paul Magron 17.10.2017 2/15



General framework

Short-Term Fourier Transform: X =}, S;.

Nonnegative Estimation /
X representation ‘ phase recovery A
05 .
J

Nonnegative representation: magnitude or power spectrogram;
Separation stage: NMF, DNNs, KAM...

Complex-valued STFTs estimation.
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Wiener filtering
Soft masking of the mixture's STFT:

ﬁj
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MMSE estimate under a Gaussian assumption;

Sy =—1_x

¢-source = ¢-mixture;

Issues when sources overlap in the TF domain.
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Phase recovery - Consistency

Complex matrices CF*T

Time (s) W
Inconsistency: Z(X) = || F(X)|]? = || X — G(X)||?.

Phase estimation through inconsistency minimization.

For source separation: combine mixture phase/consistency constraint.

Consistent Wiener filtering.
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Phase recovery - Sinusoidal model
A signal is modeled as a Y of sinusoids:

1(71) _ Z Ap62i7rupn+i¢g,p

p

Explicit relationship between the phases of adjacent time frames:

— Phase unwrapping;:

Gpt = Gpe—1 + 2wy

For slowly-varying sinusoids, estimation within each time frame:

1 Frequency estimation vy, (QIFFT);
2| Phase unwrapping: ¢f: = ¢ri—1 + 2mSvys.
38l Proceed to next frame.
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Problem setting

Two phase recovery approaches using distinct properties:
Consistency-based approaches use a property of the STFT,;

Phase unwrapping uses a signal model.

Can we combine those phase models for improved audio source
separation?
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Isotropic Gaussian model

Classical Gaussian source model (circular-symmetric or isotropic):

Sj ~ N(0,v;T)

Equivalently, S; = V;e'®/ where

®;j ~ Upo,2r]
——

Uniform

Uniform phase: we cannot incorporate a phase model.

— Proposed approach: non-uniform phase
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Anisotropic Gaussian model

Sj ~ N(mj;, T;)

The moments (m; and I';) now depend on:
A phase location parameter ¢;, given by Phase Unwrapping;
A concentration parameter , which promotes anisotropy:

k = 0 &< isotropic sources.

——k=0
— k=05
—— k=1
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MMSE estimation - no constraints

Posterior variables: S|X ~ N (p, E).

Minus log-posterior distribution:
—_ U
V() = 35 - 1,) S5 (85 ) where = (1)
1t

Minimization of ¥ — MMSE estimates: S; = p;.
When k = 0 (i.e., isotropic variables): Wiener filtering.

— Optimal combination of modeled and mixture phases.

$ TAMPERE UNIVERSITY OF TECHNOLOGY Paul Magron 17.10.2017 10/15



Consistency constraint

Goal: account for a consistency property.

Novel cost function (if J = 2 sources):

Us(S) =D (S — ps0)"E7H (Spe — ) +2 - SIIF(S)I
t SN——

Consistency constraint

Minimization: preconditioned conjugate gradient algorithm.
A generalization of the previous approaches.

When x # 0, § # 0: Consistent Anisotropic Wiener filtering.
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Setup

Musical accompaniment / singing voice separation task.
100 songs from the DSD100 dataset;

Variance parameters are either known (oracle) or estimated
beforehand: NMF on the isolated spectrograms (informed source
separation);

The optimal anisotropy weight & is determined on 50 songs (training
set).
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Influence of the consistency constraint
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Promoting consistency improves the separation quality;

Existence of an optimal consistency weight (around 1).
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Performance over iterations
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Iterations
Best results in terms of SDR/SIR/SAR;
A given value of the SDR is reached in less iterations (cf. black line).

The computational cost per iteration is roughly the same — the
procedure is overall faster than Consistent Wiener.

$ TAMPERE UNIVERSITY OF TECHNOLOGY Paul Magron 17.10.2017 14/15



Conclusion

Combining model-based and representation-based phase properties
outperforms both approaches taken separately.

Future work:
Extensions to more sources / multichannel
Real-time implementations
A generative consistent model

"Consistent" neural networks
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