

Phase reconstruction of spectrograms with linear unwrapping: application to audio signal restoration

Paul MAGRON, Roland BADEAU, Bertrand DAVID Institut Mines-Télécom - Télécom ParisTech - CNRS/LTCI - Paris, France

Introduction

Problem

Many audio signal processing techniques act on spectrogram-like representations in the Time-Frequency (TF) domain.

- The phase information is often discarded, lost or partially missing.
- We need to reconstruct the phase to re-synthesize time-domain signals.

Our approach

Explicit STFT phase calculation of mixtures of sinusoids:

- \rightarrow Horizontal unwrapping over time frames (temporal coherence). Similar calculation on impulse signals:
- \rightarrow Vertical unwrapping over frequency channels (spectral coherence). Dynamic estimation of instantaneous frequencies:
- \rightarrow Non-stationary signals (cellos and speech).

Horizontal phase reconstruction

Sinusoidal modeling

STFT of a complex sinusoid $(A, f_0, \phi_0), \forall (k, t) \in [0, F - 1] \times [0, T - 1]$:

$$X(k,t) = Ae^{2i\pi f_0 St + i\phi_0} W\left(\frac{k}{F} - f_0\right),\,$$

with:

- S the time shift between successive frames,
- W the discrete time Fourier transform of the analysis window w.

Phase relationship

Relationship between phases of adjacent bins:

$$\phi(k,t) = \phi(k,t-1) + 2\pi S f_0(t)$$
, where $\phi(k,t) = \angle X(k,t)$.

Instantaneous frequency estimation at each time frame makes representing variable frequency signals (vibratos) possible.

f_0 estimation

Quadratic Interpolated FFT (QIFFT) and decomposition of the frequency range in regions of influence [1]. For the p-th peak of magnitude A_p in channel k_p :

$$I_p = \left[\frac{A_p k_{p-1} + A_{p-1} k_p}{A_p + A_{p-1}}; \frac{A_p k_{p+1} + A_{p+1} k_p}{A_p + A_{p+1}} \right].$$

The greater A_p is relatively to A_{p-1} and A_{p+1} , the wider I_p is.

Onset phase reconstruction

Impulse model

STFT of an impulse signal centered at time n_0 :

$$X(k,t) = Aw(n_0 - St)e^{-2i\pi \frac{k}{F}(n_0 - St)}.$$

Relationship between the phases of two successive frequency channels:

$$\phi(k,t) = \phi(k-1,t) - \frac{2\pi}{F}(n_0(k) - St).$$

n_0 estimation

The shape of |X| is similar to that of w:

- Least square estimation method : n_0 -LS.
- Alternatively, quadratic interpolation over time frames : n_0 -QI.

Experimental results

Horizontal phase reconstruction

- Frequency error between phase vocoder and QIFFT estimates.
- Phase retrieval with the Griffin Lim (GL) algorithm [2] or with the proposed Phase Unwrapping (PU) method.
- Signal reconstruction quality measured with the SDR (in dB).

Dataset	IF Error (%)	GL	PU
Piano notes	0.38	-6.9	2.5
Piano pieces	0.36	-12.6	1.7
String quartets	0.41	-9.7	5.3
Speech excerpts	0.52	-0.4	0.5

Onset phase reconstruction

Test on piano signals with several strategies: impulse model-based n_0 estimation, random phases (Rand), zero-phases (0) and alternating partial phases between 0 and π (Alt).

Method	GL $ $	n_0 -LS	n_0 -QI	Rand	0	Alt
SDR (dB)	-7.9	-4.0	-2.6	-4.3	-4.7	-3.5

 n_0 -estimation with QI: best result, neat percussive attack.

Audio restoration

Temporal signals are corrupted with clicks.

Restoration in the TF domain: linear interpolation of the log-magnitude:

Below, phase restoration with the PU method or the GL algorithm. Alternatively: traditional method (AR) or High Resolution NMF (HRNMF)[3].

	Dataset	AR	HRNMF	GL	PU
•	Piano notes	11.4	16.9	8.6	11.7
•	Piano pieces	4.3	10.9	5.9	7.1
•	String quartets	8.2	10.6	6.6	7.1
•	Speech excerpts	8.3	10.9	8.9	9.4

- PU performs better than AR and GL.
- HRNMF: best performance, but this method is not blind: the model is learned on the non-corrupted data.

Future research

- Improve onset phase estimation (transient modeling).
- Exploit observed phase data for inferring missing bins.
- Use time-invariant parameters (phase offset between partials).
- Source separation framework: mixture phase can be exploited.

References:

- [1] J. Laroche and M. Dolson, Improved phase vocoder time-scale modification of audio, IEEE Trans. on SAP, 1999.
- [2] D. Griffin and J. S. Lim, Signal estimation from modified short-time Fourier transform, IEEE Trans. on ASSP, 1984.
- [3] R. Badeau and M. D. Plumbley, Multichannel high resolution NMF for modelling convolutive mixtures of non-stationary signals in the time-frequency domain, IEEE Trans. on ASLP, 2014.