The Costs of Reproducibility in Music Separation
Research: a Replication of Band-Split RNN

Paul Magron, Romain Serizel, Constance Douwes

Abstract—Band-split RNN is commonly reported as a strong
baseline for music source separation due to its high performance.
However, it is hard to reproduce since its full code is not available.
In this paper, we propose a replication of this system, and we
conduct extensive experiments to study several design choices
and training strategies. Although unsuccessful in reproducing
the original paper’s results, we propose additional variants that
ultimately reach a slightly superior performance. Our contribu-
tions are three-fold. First, this study yields several insights on the
model design and training pipeline, which sheds light on potential
improvements. Second, it reveals and discusses reproducibility
issues, both methodological and in terms of time and energy costs.
Third, our code and pre-trained models are released publicly to
foster reproducible research.

Index Terms—Class, IEEEtran, ITEX, paper, style, template,
typesetting.

I. INTRODUCTION

Music source separation [1] aims to extract the instrumental
tracks that add up to form an observed music song. This finds
application in e.g., automatic remixing for users with cochlear
implants [2], [3], karaoke/backing track generation [4], [5], or
music information retrieval [6], [7].

Despite their reported remarkable performance, most recent
methods suffer from several drawbacks from a reproducible
research perspective [8]. For instance, winners of the latest
music demixing challenges (MDX) [9], [10] are bags of mod-
els, which can be tedious to train as they depend on multiple
base architectures. Other examples are best performing models
obtained via fine-tuning on a private dataset, which makes
replication impossible [11], or architectures that require such
a large computing capacity that retraining is prohibitively long
when only a fraction of that capacity is available [12].

As a result, band-split recurrent neural network
(BSRNN) [13] appears as an appropriate candidate for
a replication study. Firstly, it outperforms (more) recent
methods, as well as earlier open frameworks such as Open-
Unmix (UMX) [14], thus it is a rather strong baseline.
Secondly, even though the model is fine-tuned on a private
dataset, its base performance considered here is obtained
using the openly available MUSDBI18-HQ dataset [15]:
this allows for fair comparison with competing techniques.
Thirdly, it is a single architecture, which is easier to train and
fine-tune than ensemble models. Lastly, the reported training
time and hardware are rather reasonable compared to more
recent variants such as [12].

P. Magron and R. Serizel are with Université de Lorraine, CNRS, Inria,
LORIA, F-54000 Nancy, France. Constance Douwes is with Laboratoire
d’Informatique et Systemes, UMR 7020, CNRS, Aix-Marseille University,
Marseille, France.

Unfortunately, while the authors have shared some code for
the model definition,! to the best of our knowledge there is
no available implementation of the full pipeline that allows
to reproduce the results reported in the paper. This includes
the code for data preprocessing, detailed training scripts with
optimizer parameters, and evaluation functions. Yet, these are
of paramount importance for reproducing any deep learning-
based system’s performance.

In this paper, we propose to replicate BSRNN as closely as
possible to the original paper. In particular, we describe the
training and evaluation protocol in details, in order to outline
difficulties encountered while replicating the work. We con-
duct extensive experiments to study various parameters, design
choices, and training strategies. Since we were unsuccessful
in reaching the performance reported in the original paper,
we implement several variants that could potentially bridge
this gap. This ultimately yields an optimized BSRNN model
whose performance is slightly superior to the paper’s results.
An additional important contribution of our work is to discuss
issues encountered while conducting such a replication, in
terms of both methodology and time/energy costs. We hope
that this study will contribute to raise awareness on the
importance of reproducible research in our community. To
foster it, we release our code and pre-trained models publicly.?

The rest of this paper is structured as follows. Section III
describes the BSRNN model, as well as some architecture
variants we investigated. Section IV presents the experimental
protocol that we set up in order to reproduce the results. We
then detailed the results in Section V, and subsequently discuss
the costs of reproducibility in Section VI. Finally, Section VII
draws some concluding remarks.

II. PROBLEM SETTING

In this section, we provide an overview of recent state-of-
the-art music separation models and we outline several repro-
ducibility issues. Since BSRNN appears as a good candidate,
we motivate to reproduce it.

A. Overview of recent models’ performance

Results in terms of chunk signal-to-distortion ratio (cSDR,
see Section IV-C for details about the metric) are presented in

Lgitlab.aicrowd.com/Tomasyu/sdx-2023-music-demixing- track- starter-kit
2github.com/magronp/bsrnn



TABLE I
SEPARATION PERFORMANCE (CSDR IN DB) FOR VARIOUS MODELS ON
THE MUSDB18-HQ TEST SET.

Vocals Bass Drums Other  Average

CWS-PResUNet [17] 8.9 59 6.4 5.8 6.8
KUIELab-MDX-Net [18] 9.0 7.8 7.2 5.9 7.5
Hybrid Demucs [19] 8.1 8.8 8.2 5.6 7.7
HT Demucs [11] 7.9 8.5 7.9 5.2 75
BSRNN [13] 10.0 72 9.0 6.7 8.2
SIMO-BSRNN [20] 9.7 7.8 10.1 6.6 8.5
TFC-TDF UNet v3 [21] 9.6 8.5 8.4 6.9 8.3
BS-RoFormer [12] 10.7 11.3 9.5 7.7 9.8
DTTNet [22] 10.1 7.5 7.4 6.9 8.1
Training with extra data

Hybrid Demucs [19] 8.8 9.1 9.3 6.2 8.3

HT Demucs [11] 9.4 10.5 10.8 6.4 9.2

BSRNN [13] 10.5 8.2 10.2 7.1 9.0

BS-RoFormer [12] 12.7 133 12.9 9.0 12.0

Table 1. First, here we detail a few problems that arise when
trying to compare these models’ performance.

We do not report older models’ performance such as UMX
or Spleeter, as they are much lower. Besides, even though the
ResUNet model [23] is commonly reported, its performance
is known on the non-HQ version of MUSDBI18, which is
a different dataset. It is occasionally reported in the same
table as other models tested on MUSDBI18-HQ, which is
confusing since no comparison can be made as numerical
results correspond to different dataset. Sometimes results are
presented as being on the HQ set, as in [22], which is simply
wrong. We therefore outline the importance of being extra
careful when copying pasting results from other papers.

Another factor that prevent from actually comparing models
is the lack of information on the inference on whole songs (see
Section IV-E). The technique is used is often not disclosed,
while it might have a large impact on the test results. For
instance, using various parameters yields average cSDR dif-
ference of about 0.2-0.3 dB [18], [20], which is of the order of
the performance difference between competing models with a
similar structure.

B. Which model is a good candidate?

KUIELab-MDX-Net and the reported Hybrid Demucs are
ensemble or bags of models, which means they combine the
outputs of different model, whether different architectures, or
several instances of the same model with different hyper-
parameters. These are particularly tedious to optimize, and
besides they don’t even yield the best performance. To quote
the authors of Demucs: “While suitable for a competition, such
a complex model does get in the way of reproducing easily
the performance achieved." [19]

DTTNet, SIMO-BSRNN, and BS-RoFormer are models that
build upon BSRNN. DTTNet is a lightweight version that
yields slightly lower performance, SIMO-BSRNN exploits
several variants (unfortunately without discussing in details the
effect of each of them specifically), and BS-RoFormer notably
replaces the RNNs with transformers. As such, BSRNN still

appear as relevant because it yields close-to-SOTA results,
it outperforms many others, and does not requires prohibite
computing ressources.

Indeed, RoFormer is prohibitively long to train.

The lower part of the Table displays results obtained with
models that are trained and/or fine-tuned with extra (private)
data. We report these to have an idea of how important the
extra data (and corresponding data processing/preparation)
is, since the delta can be up to 2.2 dB (note however that
using more data allows to increase the model size, which
contributes to the performance gap), which is far basically
as much as the largest difference between models in the upper
part of the Table (trained using the same amount of data).
Finally, one cannot even use these results to assess one model’s
best/maximum potential, since various models are trained with
different private extra datasets. As a result, they only show
the overall performance of a combination of dataset, data
processing, training pipeline, evaluation inference, and model
architecture and optimization. This does not allow for more
accurate comparison of specific components.

ajouter mention sur le fait qu’on teste aussi des trucs liés a
SIMO-BSRNN

C. Issues with BSRNN

The authors have shared some code for the model defi-
nition,? to the best of our knowledge there is no available
implementation of the full pipeline that allows to reproduce
the results reported in the paper. This includes the code for
data preprocessing, detailed training scripts with optimizer pa-
rameters, and evaluation functions. Yet, these are of paramount
importance for reproducing any deep learning-based system’s
performance, as outline above regarding the importance of data
and inference procedure.

Note that unofficial implementations exist, but they either
report substantially lower performance to the original’s,* are
tailored and adapted to a different music separation scenario,’
or they are adapted to alternative tasks such as speech enhance-
ment, hence using a different pipeline that is not applicable
to music separation/datasets.(’ Nevertheless, these were useful
for designing our own implementation.

Model definition is not correct (does not allow to compute
the original loss).

Unofficial implementation yield much lower results. They
report a 6.7 SDR on vocals, which is much lower than the
worst competing model in Table I.

III. MODEL AND VARIANTS

In this section, we briefly present the original BSRNN
model. In an attempt to bridge the performance gap between
our implementation’s and the paper’s results, we then propose
a few architecture variants. These are illustrated in Figure 1

3gitlab.aicrowd.com/Tomasyu/sdx-2023-music-demixing-track-starter-kit
4github.com/amanteur/BandSplitRNN-PyTorch

5 github.com/crlandsc/Music- Demixing-with-Band- Split-RNN
6github.com/sungwon23/BSRNN



(A) Band split module

—| Band split H Merge —> Projection |[—
D. )
.

(B) Sequence and band modeling module (repeat R times)

Split into Sequence Band
heads modeling modeling T
waﬁéﬁg’e’ ””””””””””” " Attention
i heads TAC heads

(D) RNN-based residual network

T‘ Norm ‘—>‘ RNN ‘—>‘Dense ‘—>/(F>—>

—|  Masker |—! %HMQXZS
i channels

(E) CNN-based residual network

’Dil Conv‘—> Conv ‘
T T
Dil Conv —| Conv ‘

‘Dil Conv‘—>‘ Conv ‘

—>‘ Conv ‘—>’Dil Conv‘—>‘ Conv ‘—>‘ Conv ‘—>(/dT—/\—>

|

Fig. 1. Overview of BSRNN and variants, with the band split (A), sequence and band modeling (B), and mask estimation (C) modules. Blocs with dashed
line contours denote variants from the original architecture. The sequence and band modeling modules can be either based on RNNs as in the original model

(D), or using dilated convolutions (E).

A. Original BSRNN architecture

BSRNN takes as input the complex-valued short-time
Fourier transform (STFT) of the mixture X € C¥*T where
F and T denote the number of frequency bands and time
frames, respectively, and predict the STFT of a target source
S € CF*T, In practice, complex-valued STFTs are repre-
sented as stacks of their real and imaginary parts, since such
a real-valued tensor can easily be processed with a neural
network. BSRNN consists of the three following modules.

First, the band split module decomposes the input STFT into
K subband spectrograms with variable bandwidth. These are
subsequently projected into a deep latent space with dimension
N, and the obtained deep subband features are then stacked
back into a fullband tensor with dimensions N x K x T.
The band split scheme is designed and optimized for each
source specifically, which yields instrument-specific models
of different size. Alternatively, one can use a finer bandsplit
scheme that is shared across instruments, as proposed in a
subsequent BSRNN variant paper [20]. Note however that in
this paper, the shared scheme was consider because a shared
encoder was used; we can instead use this shared scheme but
with a source-specific encoder. On le fait pas ici. Ajouter ref
a d’autres splits, comme SIMO, ou [16]

Then, the sequence and band modeling module applies two
residual networks (one after the other), whose basic structure
consists of a group normalization, a bidirectional long short-
term memory (LSTM), and a dense layer. The sequence and
band RNN act across the 7T time frames and K bands,
respectively. This dual-path approach [24] optimally exploits
the structure of audio/music signals by capturing dependencies
across both time and frequencies. Such RNNs are stacked R
times to form a deeper network.

Finally, the mask estimation module splits the output of the
previous module into subbands, and each subband feature is
fed to a multi-layer perceptron (MLP) that predicts a subband

mask. The MLPs use a hidden size p x N, where p = 4.
Subband masks are then assembled into a fullband mask
M € CF*T that is multiplied with the input STFT to yield
the source estimate: S = M ® X, which is finally reverted to
time-domain via inverse STFT (iSTFT).

B. Variants

Here we present our proposed architecture variants, focusing
on keys concepts for a clarity purpose. We refer the interested
reader to our code for full implementation details.

1) Stereo modeling: By design, BSRNN is a single-channel
model that processes the two channels of the (stereo) input
mixture independently, as if they were two single-channel
streams coming from different music songs. Not accounting
for the cross-channel information might limit the system’s per-
formance, and processing the left and right channels indepen-
dently might increase the computational burden unnecessarily.

To alleviate this issue, we propose a stereo variant of
BSRNN that is based on simple modifications of the band
split and mask estimation modules. We consider a stereo input
mixture as a 2-channel STFT X € C2*F*T  which is first
split into subbands. Then, the left and right channels of each
subband spectrogram are concatenated and jointly projected
into a deep subband feature with dimension N. The sequence
and band modeling module is identical, and the masker’s MLP
has twice as many outputs, corresponding to the two channels
of the estimated source. In what follows we refer to this
strategy as the “naive" stereo model. It corresponds to the
“merge channels" and “expand channels" blocs in Figure 1.

Alternatively, we propose a stereo-aware variant that is
based on leveraging a transform-average-concatenate (TAC)
module, which was originally tailored for speech separa-
tion [25], and recently proposed for music separation in a
BSRNN variant [20]. In a nutshell, the TAC module first
transforms a multichannel input representation via a dense



layer; then applies averaging over channels and a second dense
layer; and finally concatenates this second layer’s output with
the first layer’s transformed representation, before passing it to
a third dense layer. This module yields a representation that
shares information across channels, which makes it suitable
for stereo-aware modeling. The TAC module is applied after
sequence and band modeling [20], and the dense layers’
activation function is either a hyperbolic tangent (TanH), as
in the BSRNN variant [20], or a parametric rectified linear
unit (PReLU), as in the original TAC paper [25].

2) Alternative layers: We investigate alternative layers to
LSTMs in the sequence and band modeling module. Prelimi-
nary experiments showed that using gated recurrent units yield
similar results to LSTMs (as outlined in other studies [16]),
and replacing each RNN with a simple one-layer convo-
lutional neural network (CNN) induce a large performance
drop, although these are much faster to train because of
reduced memory constraints. However, this approach is quite
naive, as such CNNs cannot properly model sequential data
with long-term dependencies. Therefore, we propose to use
a stack of dilated CNNs, since they have shown promising
for source separation, and are competitive with RNNs due to
their increased receptive field [19], [26]. We implement the ar-
chitecture from Wang [26], which yields a fully-convolutional
model denoted band-split CNN (BSCNN). It is illustrated in
Figure 1-(E).

3) Self-attention: The self-attention mechanism has shown
promising in many tasks involving sequential data, including
music and speech separation [27]. In particular, it was used in
TFGridNet [28], a model that shares similarities with BSRNN,
as it projects frequencies bands into deep embeddings, and
learns dependencies across bands and time frames via a
dual-path-like architecture. In TFGridNet, the self-attention
mechanism was observed to yield a noticeable performance
boost, with a negligible impact in terms of model size and
computational burden. Therefore, we incorporate N, attention
heads with an encoding dimension E, within each sequence
and band modeling module, using the implementation from
the ESPnet toolbox [29].

4) Multi-head mechanism: Chen et al. [22] proposed to
replace the sequence and band modeling modules with so-
called “improved” modules. These boil down to splitting the
input feature of dimensions N x K x T into H heads, thus
with dimensions H x N/H x K x T. The RNNs then operate
in parallel across heads, and use a hidden dimension that
is divided by a factor H. This corresponds to the “split
into heads" and “merge heads" blocs in Figure 1-(B). This
effectively reduces inference time as well as the number of
(redundant) parameters. We implement and test such a multi-
head mechanism.

IV. EXPERIMENTAL PROTOCOL

This section describes our experiment protocol. Since it is
largely similar to that of the original BSRNN paper, we mostly
focus on aspects for which variants are considered, or details
that need special care and clarification.

A. Data

We use the openly available MUSDBI18-HQ dataset [15]
for all experiments. It consists of 150 stereo songs sampled
at 44100 Hz, with pairs of mixtures and corresponding four
isolated sources: vocals, bass, drums, and other. The
songs are split into 86, 14, and 50 tracks for training, valida-
tion, and testing, respectively. The STFT is computed using a
2048 sample-long Hanning window with a hop size of 512.

To generate training data, we implement the same procedure
as in the BSRNN paper [13]. Training tracks are first processed
by a source activity detector (SAD) that removes the silent
regions. Then, training data samples are generated on-the-fly
as follows (we generate 20000 samples per epoch):

(i) Randomly mixing sources from different songs. Prelim-
inary experiments did not reveal any difference between
shuffling tracks only once when training starts, or re-
shuffling tracks at each epoch. We use the former as it is
slightly faster.

Extracting random 3 s-long chunks for each source.
Randomly adjusting each chunk’s energy in a [—10, 10]
dB range.

Dropping each chunk with probability 0.1 to simulate
silence sources.

We also consider an alternative training data generation pro-
cess, without SAD preprocessing nor random chunk dropping,
that uses the same augmentations as in UMX [14], i.e.,
randomly swapping the channels with a probability of 0.5, and
rescaling the chunks’ energy using a linear gain between 0.25
and 1.25.

(i1)
(iii)

(v)

B. Model configuration

In order to accelerate prototyping, most experiments use a
small model, i.e., N = 64 and R = 8, while the original model
(herein denoted large) uses N = 128 and R = 12. All other
hyper-parameters are chosen as per the original paper [13],
unless specified explicitly.

C. Metrics

We assess source separation quality in terms of signal-to-
distortion ratio (SDR) expressed in dB [30]. We consider the
following two variants of the SDR:

e The utterance SDR (uSDR) is used in MDX chal-

lenges [9], [10]. It is equal to a basic signal-to-noise ratio.
We report the mean across songs.

o The chunk SDR (cSDR) is used in the signal separation
evaluation campaign [31]. We report the median across
the median over 1 s-long chunks in all songs, computed
using the museval toolbox [32].

D. Training

1) Loss: BSRNN is trained using a combination loss
L = Lime + L1r that consists of a time-domain term:
Lime = |iSTFT(S) — iSTFT(S)|1, (1)
and a time-frequency (TF) domain term:

L1r =S, — S, +|S: — Sil1, )



where |.|; denotes the ¢; norm, and the subscripts r and 4
respectively denote the real and imaginary parts.

2) Optimizer and hardware: In the original paper, the
model is trained using the Adam algorithm with an initial
learning rate A = 10~3, a batch size of 2, and 8 GPUs in
parallel, yielding a global batch size B = 16. Unfortunately,
we do not have access to enough (large) GPUs to obtain the
same global batch size. As a result, we resort to adjusting the
learning rate in order to preserve the same effective learning
rate A/B, which ensures similar gradient descent steps [33].
The learning rate is decayed by 0.98 every two epochs, and
gradient clipping by a maximum gradient norm of 5 is applied.

Small models are trained using 4 Nvidia RTX 2080 Ti
(11 GB) GPUs, except for the drums model with self-
attention, which is trained using 4 Nvidia Tesla T4 (15 GB)
GPUs because of memory constraints. Large models are
trained using 2 Nvidia Tesla L40S (45 GB) GPUs.

3) Monitoring: Training is conducted with a maximum
of 100 epochs in [13], which we did not observe to be
enough for convergence in most cases, thus, we set this number
at 200. Besides, the authors apply early stopping “when the
best validation is not found in 10 consecutive epochs” [13,
IV-A], which does not clearly state which quantity (loss or
SDR) is monitored. By default we chose to monitor the uSDR
since computing the cSDR is time-consuming, and we keep a
patience of 10 epochs.

E. Inference of whole songs for evaluation

At the evaluation stage (i.e., validation or test), songs
cannot be processed entirely at once by the model because
of memory constraints. Consequently, they are divided into
small (overlapping) segments that are fed to the separation
model, and then the estimated chunks are assembled using
some overlap-add (OLA) strategy to recover whole source
estimates. Here, we split the songs into segments of 10 s with
10% overlap, and the estimated chunks are assembled using a
linear fader to smooth their edges [19].

Note that in the BSRNN paper, the evaluation seg-
ments are 3 s-long with a 0.5 s hop size, and the exact
OLA/reconstruction procedure (i.e., linear fading, windowing,
trimming/concatenation) is not specified. We implement it
using a rectangular window whose scale factor is set to ensure
perfect reconstruction, and we will discuss its impact on test
results in Section V-D. However, the exact parameters of
the inference procedure was observed to have no impact on
validation in preliminary experiments, as the best selected
model is the same regardless of mild absolute differences in
terms of validation uSDR.

FE. Monitoring energy consumption

Reporting the energy consumption is crucial for evaluating
the potential climate impacts of machine learning research,
as such a deep learning-based project is likely to to have
a substantial electricity and carbon footprint [34], [35]. As
a result, we monitor the energy consumption of training
the various models considered in this work. We track the
energy (measured in kWh) during training via the codecarbon

patience=10 patience=3
------------- = EE

8 8 AT
o7 N 71
= | /7 I
x® I,AV 14
s / s

41| 44

6 2‘0 Ab 6‘0 Bb 160 1%0 6 Sb 160 150 200
Epochs Epochs

Fig. 2. Validation uSDR over epochs for the base model on the vocals
track, with a patience of 10 (left) or 30 (right). Each color corresponds to a
different run, and the dashed lines correspond to each run’s best uSDR.

toolbox,” using a power usage effectiveness factor of 1.5,
according to our computing platform’s recommendation.?® Note
that even though models are trained using different GPU
models (see Section IV-D), which has an impact on energy
consumption [36], we use this setup as it allows to optimally
exploit our available hardware.

We also estimate the total consumed energy for the project,
including all other models variants (not reported in this paper),
preliminary and additional experiments, prototyping, and in-
ference. We followed the methodology proposed in the green
algorithm online calculator [37], which approximates energy
consumption based on hardware specifications (we consider
a 3 W power per 8 GB of memory). Note that this method
tends to overestimate energy compared to codecarbon, but it
is closer to actual power meter readings [38].

V. RESULTS

This section describes our experimental results. Note that we
do not report all conducted experiments, as this paper would be
prohibitively long. We rather encourage the interested reader to
experiment with our code for conducting further investigation,
and we detail additional results in a specific document.’

A. Preliminary experiment

Let us first consider a base model, which corresponds to the
small-size version of BSRNN (see Section IV-B). We train it
using three different random seeds, and display the validation
uSDR over epochs in Figure 2 (left) for the vocals track
(similar results are obtained for the other sources). We observe
that all runs exhibit the same trend, but they yield some
variance in terms of best uSDR. This variance is explained by
instabilities in the uSDR that stem from the different initial
random seed [39], which ultimately causes training to stop at
different epochs.

To alleviate this issue, we increase the patience parameter
at 30, and we display the results in Figure 2 (right). We observe
that the mean best uSDR is increased, but more importantly,
its variance is largely reduced. Increasing patience is therefore
effective to continue training and reduce the impact of the
random seed onto the best uSDR.

7github.com/mlco2/codecarbon
8intranet.grid5000.fr/stats/indicators
9 github.com/magronp/bsrnn/docs/analysis.md



Based on these findings, one could either reduce variance
by tuning the random seed as any other hyperparameter [40],
or average multiple runs / increase patience as done above.
Nevertheless, to keep our experiments cost-effective and con-
sistent with the original paper, we report a single run’s results
with a patience of 10, unless specified explicitly (an exception
is the base model, for which we report the mean value over
the three initial runs, since we have conducted these already).

B. Validation results

We report the best model’s validation uSDR for all variants
in Table II. Each line describes the difference with the base
model (reported at line 1), which serves as a comparison
reference for each variant.

1) Training parameters:

a) Accumulating gradients: Instead of adjusting the
learning rate as described in Section IV-D2, we can accu-
mulate gradients over steps before performing descent, which
artificially increases the global batch size. Results from line 2
show that both strategies perform similarly. In what follows
we adjust the learning rate as we observed it to be more stable
when training larger models.

b) Monitoring criterion: While by default early stopping
is performed via monitoring the uSDR (see Section IV-D3), we
can instead monitor the validation loss. Both approaches yield
similar results (cf. line 3), but we chose the former as it allows
training to continue for more epochs, which is beneficial in
ensuring convergence.

¢) Loss: We conduct training by minimizing each term
of the loss individually (see Section IV-D1). Interestingly, all
loss domains (cf. lines 1, 4, and 5) yield similar results, which
contrasts with previous studies that outlined the importance
of time-domain training [41]. One explanation is that the
TF domain loss (2) treats both the real and imaginary parts
separately. This likely enforces phase consistency [42], [43]
implicitly, which makes it equivalent to a time-domain loss.

2) Original architecture parameters:

a) STFT parameters: We consider an STFT with a 4096
sample-long window and a hop size of 1024 samples, as this
setup is common among music separation models [14], [19].
As shown at line 6, this yields poor result, which we attribute
to a reduced time resolution that is not compensated by the
increased frequency resolution. Indeed, the latter has little
impact since the band split scheme and projection in a latent
space of fixed dimension occur early in the network. This
notably explains why the drop is more pronounced for the
drums than for the bass track, since percussive events are
localized in time and thus require a refined time resolution to
be properly modeled. Consistently, a larger window of 6144
points [22] yields worse results.

b) Masker size: We propose to reduce the MLP masker
size by setting p = 2 (vs. u = 4 by default, see Section III-A).
While this negatively affects performance for the drums and
other tracks, it substantially improves the bass results, thus
yielding a similar average performance (cf. line 7). Further
decreasing p at 1 degrades performance more importantly.

c) Large model: Using the original model’s parameters
(N =128 and R = 12) yields a large uSDR improvement
of 1.1 dB on average compared to the base model (line 8).
Nonetheless, such a model was not fully converged (except for
the drums track), thus we continue training after increasing
the patience, which further improves performance by 0.3 dB
(line 9). Nevertheless, this model’s test set performance is still
lower than the original results [13] (see Section V-D), which
motivates the next experiments.

3) Architecture variants:

a) Stereo models: Our naive approach to stereo modeling
results in a performance decrease, except for the bass track,
as attested by the results from line 10. One way to bridge
this gap consists in increasing the masker size (u = 8) to
compensate for the larger number of outputs, as two channels
must be recovered. While it partly mitigates the performance
drop for drums and other, it yields worse results for the
bass track (cf. line 11), and the model becomes prohibitively
large when increasing N and R.

Besides, leveraging a TAC module as described in the
SIMO-BSRNN variant [20] also exhibits a performance drop
(see line 12). However, replacing the TanH activation with a
PReLU, as when TAC was originally proposed [25], outper-
forms the base model, with a more significant improvement
for the bass and drums tracks (line 13).

b) BSCNN: We first consider a small variant of our
proposed BSCNN (N = 32, R = 4, no band modeling), as
this allows to conduct faster preliminary experiments to tune
the corresponding hyperparameters (number of dilated layers,
kernel sizes, etc.). We then report at line 14 the performance
of such an optimized BSCNN model with larger size (/N = 64,
R = 8). We observe that, while it is faster to train and slightly
lighter, BSCNN is outperformed by the RNN-based network.
A refined and source-specific tuning of the convolution pa-
rameters (e.g., considering different parameters for band and
sequence modeling) could improve performance, which we
leave to future investigation.

c) Self-attention: As attested by lines 15 and 16, in-
corporating self-attention heads is beneficial, except for the
other track. In particular, such a small-size drums model
with attention performs similarly to a large model with no
attention (cf. line 8). This approach is therefore an interesting
alternative to larger and much more computationally demand-
ing models such as those that completely replace RNNs with
transformers [12].

d) Multi-head module: Results from line 17 show that
the multi-head module performs worse for most sources,
except for the vocals track. Setting R = 4 [22] or further
increasing H degrades performance more importantly, though
the model gets much lighter.

4) Data generation: Instead of randomly dropping each
chunk to simulate silent sources when generating data [13, IV-
A-2], we instead only drop the farget source, which improves
performance for the bass track (cf. line 18). Besides, not
performing SAD and applying the UMX-like augmentations
further improves performance on average, as observed at
line 19. This suggests that there is room for improvement for
our SAD implementation, since this preprocessing is alleged



TABLE II
COMPARISON OF VARIOUS MODELS’ PERFORMANCE: BEST MODEL’S VALIDATION USDR (IN DB), TOTAL NUMBER OF PARAMETERS (IN MILLIONS, “-”
DENOTES THE SAME VALUE AS IN THE PRECEDING LINE), AND ESTIMATED ENERGY FOR TRAINING ALL SOURCES (IN KWH).

Validation uSDR (dB)

# Parameters (M)  Energy (kWh)

Vocals Bass Drums Other  Average \
1 Base model: N =64, R =38 | 7.7 6.1 9.7 4.8 7.1 | 32.3 127
Training parameters | |
2 Accumulating gradients 8.0 5.8 9.6 4.9 7.1 - 129
3 Monitoring with the loss 7.5 6.4 9.3 4.8 7.1 - 120
4 Loss domain: time 7.9 6.1 9.4 4.9 7.1 - 116
5 Loss domain: TF 7.9 6.4 9.6 4.9 7.2 - 131
Base parameters | |
6 STFT: window=4096, hop=1024 7.3 5.9 8.7 4.4 6.6 37.1 58
7  Masker factor p = 2 7.9 6.8 9.4 4.4 7.1 20.6 110
8  Large model: N =128, R = 12 9.2 7.3 10.3 5.8 8.2 146.7 230
9 Large model and patience=30 9.5 7.8 10.3 6.3 8.4 - 354
Stereo models | |
10 Naive 7.7 6.6 8.4 4.0 6.7 37.1 78
11 Naive, with 4 = 8 7.9 6.1 8.7 4.3 6.7 81.1 87
12 TAC with TanH activation 7.6 6.0 9.6 4.3 6.8 34.7 117
13 TAC with PReLU activation 7.9 6.5 10.0 4.7 7.3 34.7 128
Architecture variants | |
14  BSCNN 7.3 5.9 9.0 4.2 6.6 29.7 113
15 Attention: N, =1, E, =8 7.7 7.4 10.4 4.8 7.6 33.0 151
16  Attention: No, =2, E, = 16 8.2 7.7 10.4 4.9 7.8 332 157
17 Multi-head module, H = 2 7.6 5.5 9.1 4.0 6.6 22.0 91
Data generation | |
18  Silent target (instead of all sources) 7.9 6.6 9.5 4.4 7.1 32.3 110
19  No SAD; UMX-like augmentations 8.2 6.9 9.5 5.3 7.5 - 135
Optimized models | |
20 Attention, patience = 30, no SAD 10.1 9.1 10.9 6.7 9.2 1499 426
21+ TAC 10.2 10.2 11.3 6.9 9.6 164.1 508
to greatly benefit the separation. Note however that it is not >
clear from [13] to what extent, since its impact is not evaluated 004
in a specific experiment.
We use this alternative data generation process to train a 851 o
large model (N = 128 and R = 12) with attention (N, = 2 o 8
and E, = 16), with an increased patience of 30. According z’“' 26
to the results displayed at line 20, this optimized model a ol 2
outperforms our previous large model (line 9), at the cost of ' 2
a moderate increase in number of parameters. 701
12
e'Ll
6.5 ¢ i A7 A4

C. Energy consumption

We report the energy consumed for each model’s training in
the last column of Table II. Note that line 1 corresponds to the
mean over the three runs (see Section V-A). Most small-size
model variants exhibit a similar energy cost, except for those
with lighter architecture / memory requirements, or generally
faster convergence (lines 6, 10, and 17), which all reduce
energy consumption. Conversely, the larger energy costs of
models with attention (lines 15 and 16) is due to requiring
more epochs for reaching convergence. This highlights the
importance of considering both performance and energy con-
sumption when performing model selection.

T T T T T
200 250 300 350 400

Energy (kWh)

Fig. 3. Performance vs. energy for model variants (each number corresponds
to the line number in Table II). Blue dots highlight models that are optimal
in a Pareto sense.

We further illustrate this by displaying performance vs.
energy in Figure 3, where we highlight points that are optimal
in a Pareto sense [44], that is, such that there is no other point
yielding both a higher SDR and a lower energy. commenter

Overall, training all the models discussed in this table
amounts to kWh, which represents about times the



energy cost of the single best model (line 20). While this
ratio might seem reasonable at first glance, we also estimate
the total consumed energy for the project, as described in
Section IV-F. This amounts to kWh, which is more than

times the energy consumption of training the best model,
or xx times that of the base model. This is equivalent to the
yearly electricity consumption of about xx persons in France
(where computations have been performed)lo, or about xx km
of electric car.!!

In all fairness, part of this energy cost is due to our own
implementation errors, which resulted in, e.g., interrupted
or redundant training runs. However, we believe that most
music/audio researchers are not machine learning or coding
experts, therefore these pitfalls are likely common. Be that as
it may, these are typical ratios associated with project devel-
opment: for instance the authors from a previous study [35]
report that the electricity cost of their whole project is about
2000 times that of training a single model, and they report
running almost 5000 jobs in total, including many that crashed.

Overall, such a project has a substantial energy cost,
which should be systematically reported, analyzed, and taken
into account when performing model selection. Besides, this
project’s footprint would have been substantially reduced upon
availability of the code, as many trial and error experiments
could have been avoided.

D. Test results

The separation results on the test set are reported in Ta-
ble III. First, we compare our linear fader-based inference
procedure to an OLA-based procedure, similar to that of
BSRNN (see Section IV-E). Varying hop sizes using this OLA
procedure yields a 0.1 dB difference on the vocals track,
which is consistent with the original results [13, Table II]. The
OLA and fader techniques yield similar results on average, but
using OLA with a 0.5 s hop size largely increases inference
time by a factor of 6. This confirms the advantage of our linear
fader for faster inference. Similar conclusions can be drawn
using the optimized model instead.

We also report the original test results [13] in Table III,
and we observe that our implementation falls behind these
by 0.5 dB on average. This motivates further refining our
implementation to better match these. Nevertheless, our op-
timized model is able to bridge this performance gap, as it
largely improves our implementation of the model, and it even
outperforms the original paper’s results by 0.2-0.3 dB. This
optimized model is therefore an interesting alternative baseline
to BSRNN, as it is openly available and yields similar to
slightly better results.

VI. DISCUSSION

This replication study has shown insightful in many regards.
It notably extended the original paper’s analysis by investi-
gating a variety of parameters such as architectural (e.g., the
masker’s MLP size), training-related (e.g., the contribution

10vww.data.gouv.fr/reuses/consommation- par-habitant-et-par-ville-delectr
icite-en-france/

Iey-database.org/cheatsheet/energy- consumption-electric-car

of each term in the loss), or data-related (e.g., the SAD
preprocessing). Explicitly reporting such results, even though
sometimes negative, is beneficial to other researchers as it
spare them a costly (re)investigation. Besides, these detailed
results pave the way for potential improvements in terms of
model reduction. For instance, reducing the masker size or
leveraging our stereo approach yielded a similarly performing
but lighter bass model. Alternatively, using a small drums
model with attention is both competitive with a larger variant
and significantly lighter. Our experiments also illustrate that
one cannot reuse as-is building blocks from other papers.
For instance, the dilated convolution [26], or the multi-head
modules [22], were shown effective in these papers, but they
were used in conjunction with other architectural blocks and
integrated in a different pipeline. The same applies to the TAC
module, which was incorporated to BSRNN specifically [20],
but in conjunction with other stuffs (a common encoder and
BS scheme for all sources, a mixing constraint, and a context-
aware masker). Here we observed that it does not yield any
substantial improvement.

While our analysis mostly focused on performance results
in terms of numerical values of SDRs, the fundamental repro-
ducibility issues lie beyond this sole aspect, which echoes prior
work on reproducibility in music information retrieval [8],
[45]. A first problem is that the discrepancy between results
is currently unexplained, and can come from whether one or a
combination of factors including, but not limited to, all variants
considered in this study. Since no official implementation for
the whole pipeline is available, there is no guarantee that we
did not make any mistake or that there is not a substan-
tial mismatch between implementations. A second problem
is that the replication process itself is prohibitively time-
consuming, which hampers research development. Indeed, the
whole implementation of the project (including prototyping
and debugging), as well as all extensive training to tune
hyper-parameters, could be avoided if the code (along with
training routine, hyper-parameters and eventually weights)
was released. This in turn would promote faster research
developments that build upon this project, rather than re-
implementing it.

Finally, the specific deep learning nature of this project
brings additional reproducibility problems. Indeed, while deep
learning research has a considerable environmental footprint
and should move towards its systematic monitoring and re-
duction [34], [35], non-reproducible research exacerbates this
issue, as discussed in Section V-C. Besides, deep models’
performance strongly depend on the hardware, as it affects
the training protocol. On the one hand, given the impact of
the (global) batch size on training speed and convergence, and
thus on the final performance, accommodating the available
hardware requires to consider and carefully fine-tune adapta-
tion strategies (e.g., scaling the learning rate or accumulating
gradients), which represents a substantial extra experimental
burden. On the other hand, reproducibility might be plain
impossible in practice for public institutions with limited
computing capacity. As outlined in Section II, training the four
source models of the BS-RoFormer [12] would take about 1.5
years using our largest cluster. In a nutshell, these various costs



TABLE III
SOURCE SEPARATION PERFORMANCE ON THE MUSDB18-HQ TEST SET (USDR AND CSDR, IN DB).

Vocals Bass Drums Other Average
uSDR  c¢SDR | uSDR ¢SDR | uSDR c¢SDR | uSDR ¢SDR | uSDR c¢SDR

Paper’s results [13] 10.0 10.0 6.8 7.2 8.9 9.0 6.0 6.7 7.9 8.2
Our implementation

Fader 9.2 9.1 6.5 7.7 8.6 8.1 5.4 5.7 7.4 7.7

OLA, hop=1.5s 9.1 - 6.5 - 8.3 - 5.4 - 7.3 -

OLA, hop =0.5 s 9.2 - 6.6 - 8.4 - 5.5 - 7.4 -
Optimized model 9.7 9.9 7.4 8.9 9.6 9.2 5.8 6.1 8.1 8.5
+ TAC 9.8 9.8 8.1 9.8 10.0 10.3 5.8 6.3 8.4 9.1

and issues advocate for a more reproducible research.

This echoes similar works from other machine learning
fields [46], [47], and could also be extended to similar tasks
such as speech enhancement and separation, which are prone
to similar pitfalls.

VII. CONCLUSION

In this paper, we have replicated and extensively ana-
lyzed the BSRNN model for music source separation. We
implemented and released a fully functioning model, whose
performance (whether optimized or not) makes it an interesting
alternative baseline to that of the original BSRNN, as it is
openly available, thus reproducible. We also discussed the
various costs associated with this project, notably in terms
of energy consumption.

Beyond its focus on performance, the core contribution of
this work is to recall that reproducibility is a fundamental as-
pect of the scientific endeavour. We encourage our colleagues
to adopt open research practices, notably via releasing their
code with proper documentation [8]. When this is not possible
due to copyright matters or company policy, we respectfully
advocate that papers resulting from such research should
be considered mostly for their methodological or theoretical
merits, and numerical performance results should be reported
for comparison with extra care - or not at all. Such practices
will foster a more transparent, reliable, and cost-effective
research.

VIII. ACKNOWLEDGEMENTS

All computation were carried out using the Grid5000
(https://www.grid5000.fr) testbed, supported by a French sci-
entific interest group hosted by Inria and including CNRS,
RENATER and several Universities as well as other organi-
zations. We thank Jianwei Yu (author of the BSRNN paper)
for answering some of our implementation-related questions.
We also thank Christopher Landschoot for fruitful discussion
related to his own unofficial BSRNN implementation.

REFERENCES

[1] E. Cano, D. FitzGerald, A. Liutkus, M. D. Plumbley, and F. Stéter,
“Musical source separation: An introduction,” IEEE Signal Processing
Magazine, vol. 36, no. 1, pp. 31-40, Jan. 2019.

J. Pons, J. Janer, T. Rode, and W. Nogueira, “Remixing music using
source separation algorithms to improve the musical experience of
cochlear implant users,” The Journal of the Acoustical Society of
America, vol. 140, no. 6, p. 43384349, Dec. 2016.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

S. Tahmasebi, T. Gajecki, and W. Nogueira, “Design and evaluation of a
real-time audio source separation algorithm to remix music for cochlear
implant users,” Frontiers in Neuroscience, vol. 14, no. 434, May 2020.
H. Tachibana, Y. Mizuno, N. Ono, and S. Sagayama, “A real-time audio-
to-audio karaoke generation system for monaural recordings based on
singing voice suppression and key conversion techniques,” Journal of
Information Processing, vol. 24, no. 3, pp. 470-482, May 2016.

Z. Rafii, A. Liutkus, F.-R. Stoter, S. I. Mimilakis, D. FitzGerald,
and B. Pardo, “An overview of lead and accompaniment separation
in music,” IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 26, no. 8, pp. 1307-1335, August 2018.

N. Ono, K. Miyamoto, H. Kameoka, J. Le Roux, Y. Uchiyama,
E. Tsunoo, T. Nishimoto, and S. Sagayama, Harmonic and Percussive
Sound Separation and Its Application to MIR-Related Tasks. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 213-236.

L. Lin, Q. Kong, J. Jiang, and G. Xia, “A unified model for zero-
shot music source separation, transcription and synthesis,” in Proc. of
the International Society for Music Information Retrieval Conference
(ISMIR), November 2021, pp. 381-388.

B. McFee, J. W. Kim, M. Cartwright, J. Salamon, R. M. Bittner, and
J. P. Bello, “Open-source practices for music signal processing research:
Recommendations for transparent, sustainable, and reproducible audio
research,” IEEE Signal Processing Magazine, vol. 36, no. 1, pp. 128—
137, Jan. 2019.

Y. Mitsufuji, G. Fabbro, S. Uhlich, E-R. Stoter, A. Défossez, M. Kim,
W. Choi, C.-Y. Yu, and K.-W. Cheuk, “Music demixing challenge 2021,”
Frontiers in Signal Processing, vol. 1, 2022.

G. Fabbro, S. Uhlich, C.-H. Lai, W. Choi, M. Martinez-Ramirez,
W. Liao, I. Gadelha, G. Ramos, E. Hsu, H. Rodrigues, F.-R. Stoter,
A. Défossez, Y. Luo, J. Yu, D. Chakraborty, S. Mohanty, R. Solovyev,
A. Stempkovskiy, T. Habruseva, N. Goswami, T. Harada, M. Kim,
J. H. Lee, Y. Dong, X. Zhang, J. Liu, and Y. Mitsufuji, “The sound
demixing challenge 2023 — music demixing track,” Transactions of the
International Society for Music Information Retrieval (TISMIR), Apr.
2024.

S. Rouard, F. Massa, and A. Défossez, “Hybrid transformers for music
source separation,” in Proc. IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), June 2023.

W.-T. Lu, J.-C. Wang, Q. Kong, and Y.-N. Hung, “Music source
separation with band-split rope transformer,” in Proc. IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), April
2024.

Y. Luo and J. Yu, “Music source separation with band-split RNN,”
IEEE/ACM Transactions on Audio, Speech, and Language Processing,
vol. 31, pp. 1893-1901, May 2023.

F.-R. Stoter, S. Uhlich, A. Liutkus, and Y. Mitsufuji, “Open-Unmix - a
reference implementation for music source separation,” Journal of Open
Source Software, 2019.

Z. Rafii, A. Liutkus, F.-R. Stoter, S. I. Mimilakis, and R. Bittner,
“MUSDB18-HQ - an uncompressed version of MUSDB18,” Dec. 2019.
[Online]. Available: https://doi.org/10.5281/zenodo.3338373

K. N. Watcharasupat, C.-W. Wu, Y. Ding, 1. Orife, A. J. Hipple, P. A.
Williams, S. Kramer, A. Lerch, and W. Wolcott, “A generalized bandsplit
neural network for cinematic audio source separation,” IEEE Open
Journal of Signal Processing, vol. 5, pp. 73-81, 2024.

H. Liu, Q. Kong, and J. Liu, “CWS-PResUNet: Music source separation
with channel-wise subband phase-aware ResUNet,” in Proceedings of
the ISMIR 2021 Workshop on Music Source Separation, 2021.

M. Kim, W. Choi, J. Chung, D. Lee, and S. Jung, “KUIELab-MDX-Net:
A two-stream neural network for music demixing,” in Proceedings of
the ISMIR 2021 Workshop on Music Source Separation, 2021.



[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

(33]

[34]

[35]

[36]

(371

[38]

[39]

A. Défossez, “Hybrid spectrogram and waveform source separation,” in
Proceedings of the ISMIR 2021 Workshop on Music Source Separation,
2021.

Y. Luo and R. Gu, “Improving music source separation with simo stereo
band-split rn,” in Proc. IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Apr. 2024.

M. Kim, J. H. Lee, and S. Jung, “Sound demixing challenge 2023 music
demixing track technical report: TFC-TDF-UNET V3,” 2023, arXiv
preprint arXiv:2306.09382.

J. Chen, S. Vekkot, and P. Shukla, “Music source separation based on
a lightweight deep learning framework (DTTNET: DUAL-PATH TFC-
TDF UNET),” in Proc. IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), April 2024.

Q. Kong, Y. Cao, H. Liu, K. Choi, and Y. Wang, “Decoupling magnitude
and phase estimation with deep ResUNet for music source separation,” in
Proc. of the 22nd International Society for Music Information Retrieval
Conference (ISMIR). ISMIR, Nov. 2021, pp. 342-349.

Y. Luo, Z. Chen, and T. Yoshioka, “Dual-path RNN: Efficient long
sequence modeling for time-domain single-channel speech separation,”
in Proc. IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), May 2020.

Y. Luo, Z. Chen, N. Mesgarani, and T. Yoshioka, “End-to-end micro-
phone permutation and number invariant multi-channel speech sepa-
ration,” in Proc. of the IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2020, pp. 6394-6398.

J. Wang, “An Efficient Speech Separation Network Based on Recurrent
Fusion Dilated Convolution and Channel Attention,” in Proc. INTER-
SPEECH 2023, 2023, pp. 3699-3703.

A. Pandey and D. Wang, “Dense CNN with self-attention for time-
domain speech enhancement,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. 29, p. 1270-1279, March 2021.
Z.-Q. Wang, S. Cornell, S. Choi, Y. Lee, B.-Y. Kim, and S. Watanabe,
“TF-GRIDNET: Making time-frequency domain models great again for
monaural speaker separation,” in Proc. IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), June 2023.

B. Yan, J. Shi, Y. Tang, H. Inaguma, Y. Peng, S. Dalmia, P. Poldk,
P. Fernandes, D. Berrebbi, T. Hayashi, X. Zhang, Z. Ni, M. Hira,
S. Maiti, J. Pino, and S. Watanabe, “ESPnet-ST-v2: Multipurpose spoken
language translation toolkit,” in Proc. Annual Meeting of the Association
for Computational Linguistics, 2023, pp. 400—411.

E. Vincent, R. Gribonval, and C. Févotte, “Performance Measurement
in Blind Audio Source Separation,” IEEE Transactions on Speech and
Audio Processing, vol. 14, no. 4, pp. 1462-1469, July 2006.

F.-R. Stoter, A. Liutkus, and N. Ito, “The 2018 signal separation
evaluation campaign,” in Proc. International Conference on Latent
Variable Analysis and Signal Separation, 2018.

F.-R. Stoter, A. Liutkus, D. Samuel, L. Miner, F. Voituret, pyup.io bot,
S. Bot, and tobeperson, “sigsep/sigsep-mus-eval: museval 0.4.0,” Feb.
2021. [Online]. Available: https://doi.org/10.5281/zenodo.4486535

P. Goyal, P. Dolldr, R. B. Girshick, P. Noordhuis, L. Wesolowski,
A. Kyrola, A. Tulloch, Y. Jia, and K. He, “Accurate, Large Minibatch
SGD: Training ImageNet in 1 Hour,” ArXiv, vol. abs/1706.02677, 2017.
P. Henderson, J. Hu, J. Romoff, E. Brunskill, D. Jurafsky, and J. Pineau,
“Towards the systematic reporting of the energy and carbon footprints
of machine learning,” Journal of Machine Learning Research (JMLR),
vol. 21, no. 1, Jan. 2020.

E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy
considerations for modern deep learning research,” Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 34, no. 09, pp.
13693-13 696, Apr. 2020. [Online]. Available: https://ojs.aaai.org/ind
ex.php/AAAT/article/view/7123

R. Serizel, S. Cornell, and N. Turpault, “Performance above all ? energy
consumption vs. performance for machine listening, a study on dcase
task 4 baseline,” in Proc. IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), June 2023.

L. Lannelongue, J. Grealey, and M. Inouye, “Green algorithms: quan-
tifying the carbon footprint of computation,” Advanced science, vol. 8,
no. 12, p. 2100707, 2021.

M. Jay, V. Ostapenco, L. Lefevre, D. Trystram, A.-C. Orgerie, and
B. Fichel, “An experimental comparison of software-based power me-
ters: focus on CPU and GPU,” in CCGrid 2023-23rd IEEE/ACM inter-
national symposium on cluster, cloud and internet computing. 1EEE,
2023, pp. 1-13.

X. Bouthillier, P. Delaunay, M. Bronzi, A. Trofimov, B. Nichyporuk,
J. Szeto, N. Mohammadi Sepahvand, E. Raff, K. Madan, V. Voleti,
S. Ebrahimi Kahou, V. Michalski, T. Arbel, C. Pal, G. Varoquaux, and

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

P. Vincent, “Accounting for variance in machine learning benchmarks,”
in Proc. Machine Learning and Systems, vol. 3, 2021.

S. Bethard, “We need to talk about random seeds,” 2022, arXiv preprint
arXiv:2210.13393.

J. Heitkaemper, D. Jakobeit, C. Boeddeker, L. Drude, and R. Haeb-
Umbach, “Demystifying TasNet: A dissecting approach,” in Proc. IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), May 2020.

J. L. Roux, N. Ono, and S. Sagayama, “Explicit consistency constraints
for STFT spectrograms and their application to phase reconstruction,”
in ITRW on Statistical and Perceptual Audio Processing (SAPA 2008),
2008, pp. 23-28.

S. Wisdom, J. Hershey, K. Wilson, J. Thorpe, M. Chinen, B. Patton,
and R. A. Saurous, “Differentiable consistency constraints for improved
deep speech enhancement,” in Proc. IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), May 2019.

C. Douwes, G. Bindi, A. Caillon, P. Esling, and J.-P. Briot, “Is quality
enoughf integrating energy consumption in a large-scale evaluation of
neural audio synthesis models,” in Proc. IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), June 2023.

J. Six, F. Bressan, and M. Leman, “A case for reproducibility in MIR:
Replication of ‘a highly robust audio fingerprinting system’,” Transac-
tions of the International Society for Music Information Retrieval, Sep
2018.

M. Ferrari Dacrema, P. Cremonesi, and D. Jannach, “Are we
really making much progress? a worrying analysis of recent neural
recommendation approaches,” in Proceedings of the 13th ACM
Conference on Recommender Systems, ser. RecSys 19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 101-109.
[Online]. Available: https://doi.org/10.1145/3298689.3347058

A. Belz, S. Agarwal, A. Shimorina, and E. Reiter, “A systematic
review of reproducibility research in natural language processing,”
in Proceedings of the 16th Conference of the European Chapter
of the Association for Computational Linguistics: Main Volume,
P. Merlo, J. Tiedemann, and R. Tsarfaty, Eds. Online: Association
for Computational Linguistics, Apr. 2021, pp. 381-393. [Online].
Available: https://aclanthology.org/2021.eacl-main.29/



